ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Performance Modeling for Practical Byzantine Fault Tolerance Consensus in Blockchain

74   0   0.0 ( 0 )
 نشر من قبل Quan-Lin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The practical Byzantine fault tolerant (PBFT) consensus mechanism is one of the most basic consensus algorithms (or protocols) in blockchain technologies, thus its performance evaluation is an interesting and challenging topic due to a higher complexity of its consensus work in the peer-to-peer network. This paper describes a simple stochastic performance model of the PBFT consensus mechanism, which is refined as not only a queueing system with complicated service times but also a level-independent quasi-birth-and-death (QBD) process. From the level-independent QBD process, we apply the matrix-geometric solution to obtain a necessary and sufficient condition under which the PBFT consensus system is stable, and to be able to numerically compute the stationary probability vector of the QBD process. Thus we provide four useful performance measures of the PBFT consensus mechanism, and can numerically calculate the four performance measures. Finally, we use some numerical examples to verify the validity of our theoretical results, and show how the four performance measures are influenced by some key parameters of the PBFT consensus. By means of the theory of multi-dimensional Markov processes, we are optimistic that the methodology and results given in this paper are applicable in a wide range research of PBFT consensus mechanism and even other types of consensus mechanisms.



قيم البحث

اقرأ أيضاً

In this note, we observe a safety violation in Zyzzyva and a liveness violation in FaB. To demonstrate these issues, we require relatively simple scenarios, involving only four replicas, and one or two view changes. In all of them, the problem is manifested already in the first log slot.
This paper considers the problem of Byzantine fault-tolerance in distributed multi-agent optimization. In this problem, each agent has a local cost function, and in the fault-free case, the goal is to design a distributed algorithm that allows all th e agents to find a minimum point of all the agents aggregate cost function. We consider a scenario where some agents might be Byzantine faulty that renders the original goal of computing a minimum point of all the agents aggregate cost vacuous. A more reasonable objective for an algorithm in this scenario is to allow all the non-faulty agents to compute the minimum point of only the non-faulty agents aggregate cost. Prior work shows that if there are up to $f$ (out of $n$) Byzantine agents then a minimum point of the non-faulty agents aggregate cost can be computed exactly if and only if the non-faulty agents costs satisfy a certain redundancy property called $2f$-redundancy. However, $2f$-redundancy is an ideal property that can be satisfied only in systems free from noise or uncertainties, which can make the goal of exact fault-tolerance unachievable in some applications. Thus, we introduce the notion of $(f,epsilon)$-resilience, a generalization of exact fault-tolerance wherein the objective is to find an approximate minimum point of the non-faulty aggregate cost, with $epsilon$ accuracy. This approximate fault-tolerance can be achieved under a weaker condition that is easier to satisfy in practice, compared to $2f$-redundancy. We obtain necessary and sufficient conditions for achieving $(f,epsilon)$-resilience characterizing the correlation between relaxation in redundancy and approximation in resilience. In case when the agents cost functions are differentiable, we obtain conditions for $(f,epsilon)$-resilience of the distributed gradient-descent method when equipped with robust gradient aggregation.
Serverless computing has grown in popularity in recent years, with an increasing number of applications being built on Functions-as-a-Service (FaaS) platforms. By default, FaaS platforms support retry-based fault tolerance, but this is insufficient f or programs that modify shared state, as they can unwittingly persist partial sets of updates in case of failures. To address this challenge, we would like atomic visibility of the updates made by a FaaS application. In this paper, we present AFT, an atomic fault tolerance shim for serverless applications. AFT interposes between a commodity FaaS platform and storage engine and ensures atomic visibility of updates by enforcing the read atomic isolation guarantee. AFT supports new protocols to guarantee read atomic isolation in the serverless setting. We demonstrate that aft introduces minimal overhead relative to existing storage engines and scales smoothly to thousands of requests per second, while preventing a significant number of consistency anomalies.
Artificial Intelligence systems require a through assessment of different pillars of trust, namely, fairness, interpretability, data and model privacy, reliability (safety) and robustness against against adversarial attacks. While these research prob lems have been extensively studied in isolation, an understanding of the trade-off between different pillars of trust is lacking. To this extent, the trade-off between fault tolerance, privacy and adversarial robustness is evaluated for the specific case of Deep Neural Networks, by considering two adversarial settings under a security and a privacy threat model. Specifically, this work studies the impact of the fault tolerance of the Neural Network on training the model by adding noise to the input (Adversarial Robustness) and noise to the gradients (Differential Privacy). While training models with noise to inputs, gradients or weights enhances fault tolerance, it is observed that adversarial robustness and fault tolerance are at odds with each other. On the other hand, ($epsilon,delta$)-Differentially Private models enhance the fault tolerance, measured using generalisation error, theoretically has an upper bound of $e^{epsilon} - 1 + delta$. This novel study of the trade-off between different elements of trust is pivotal for training a model which satisfies the requirements for different pillars of trust simultaneously.
Blockchain and general purpose distributed ledgers are foundational technologies which bring significant innovation in the infrastructures and other underpinnings of our socio-economic systems. These P2P technologies are able to securely diffuse info rmation within and across networks, without need for trustees or central authorities to enforce consensus. In this contribution, we propose a minimalistic stochastic model to understand the dynamics of blockchain-based consensus. By leveraging on random-walk theory, we model block propagation delay on different network topologies and provide a classification of blockchain systems in terms of two emergent properties. Firstly, we identify two performing regimes: a functional regime corresponding to an optimal system function; and a non-functional regime characterised by a congested or branched state of sub-optimal blockchains. Secondly, we discover a phase transition during the emergence of consensus and numerically investigate the corresponding critical point. Our results provide important insights into the consensus mechanism and sub-optimal states in decentralised systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا