ﻻ يوجد ملخص باللغة العربية
The practical Byzantine fault tolerant (PBFT) consensus mechanism is one of the most basic consensus algorithms (or protocols) in blockchain technologies, thus its performance evaluation is an interesting and challenging topic due to a higher complexity of its consensus work in the peer-to-peer network. This paper describes a simple stochastic performance model of the PBFT consensus mechanism, which is refined as not only a queueing system with complicated service times but also a level-independent quasi-birth-and-death (QBD) process. From the level-independent QBD process, we apply the matrix-geometric solution to obtain a necessary and sufficient condition under which the PBFT consensus system is stable, and to be able to numerically compute the stationary probability vector of the QBD process. Thus we provide four useful performance measures of the PBFT consensus mechanism, and can numerically calculate the four performance measures. Finally, we use some numerical examples to verify the validity of our theoretical results, and show how the four performance measures are influenced by some key parameters of the PBFT consensus. By means of the theory of multi-dimensional Markov processes, we are optimistic that the methodology and results given in this paper are applicable in a wide range research of PBFT consensus mechanism and even other types of consensus mechanisms.
In this note, we observe a safety violation in Zyzzyva and a liveness violation in FaB. To demonstrate these issues, we require relatively simple scenarios, involving only four replicas, and one or two view changes. In all of them, the problem is manifested already in the first log slot.
This paper considers the problem of Byzantine fault-tolerance in distributed multi-agent optimization. In this problem, each agent has a local cost function, and in the fault-free case, the goal is to design a distributed algorithm that allows all th
Serverless computing has grown in popularity in recent years, with an increasing number of applications being built on Functions-as-a-Service (FaaS) platforms. By default, FaaS platforms support retry-based fault tolerance, but this is insufficient f
Artificial Intelligence systems require a through assessment of different pillars of trust, namely, fairness, interpretability, data and model privacy, reliability (safety) and robustness against against adversarial attacks. While these research prob
Blockchain and general purpose distributed ledgers are foundational technologies which bring significant innovation in the infrastructures and other underpinnings of our socio-economic systems. These P2P technologies are able to securely diffuse info