ﻻ يوجد ملخص باللغة العربية
Recent work has revealed two classes of Globular Clusters (GCs), dubbed Type-I and Type-II. Type-II GCs are characterized by a blue- and a red- red giant branch composed of stars with different metallicities, often coupled with distinct abundances in the slow-neutron capture elements (s-elements). Here we continue the chemical tagging of Type-II GCs by adding the two least-massive clusters of this class, NGC1261 and NGC6934. Based on both spectroscopy and photometry, we find that red stars in NGC1261 are slightly enhanced in [Fe/H] by ~0.1 dex and confirm that red stars of NGC 6934 are enhanced in iron by ~0.2 dex. Neither NGC1261 nor NGC6934 show internal variations in the s-elements, which suggests a GC mass threshold for the occurrence of s-process enrichment. We found a significant correlation between the additional Fe locked in the red stars of Type-II GCs and the present-day mass of the cluster. Nevertheless, most Type II GCs retained a small fraction of Fe produced by SNe II, lower than the 2%; NGC6273, M54 and omega Centauri are remarkable exceptions. In the appendix, we infer for the first time chemical abundances of Lanthanum, assumed as representative of the s-elements, in M54, the GC located in the nucleus of the Sagittarius dwarf galaxy. Red-sequence stars are marginally enhanced in [La/Fe] by 0.10pm0.06 dex, in contrast with the large [La/Fe] spread of most Type II GCs. We suggest that different processes are responsible for the enrichment in iron and s-elements in Type-II GCs.
We conduct a series of comparisons between spectroscopic and photometric observations of globular clusters and stellar models to examine their predictive power. Data from medium-to-high resolution spectroscopic surveys of lithium allow us to investig
We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48 Galactic globular clusters based on almost 90000 public and proprietary images. The photometry is calibrated with the latest transformations obtained in the framework of our
The origin of multiple stellar populations in Globular Clusters (GCs) is one of the greatest mysteries of modern stellar astrophysics. N-body simulations suggest that the present-day dynamics of GC stars can constrain the events that occurred at high
We present wide field JHKs photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the 2MASS photometric system. Differential reddening corrections and statistical field star decontamination are employed for all
The existence of star-to-star light-element abundance variations in massive Galactic and extragalactic star clusters has fairly recently superseded the traditional paradigm of individual clusters hosting stars with the same age, and uniform chemical