ترغب بنشر مسار تعليمي؟ اضغط هنا

A test of the standard dark matter density evolution law using galaxy clusters and cosmic chronometers

103   0   0.0 ( 0 )
 نشر من قبل Kamal Bora
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we implement a test of the standard law for the dark matter density evolution. For this purpose, only a flat universe and the validity of the FRW metric are assumed. A deformed dark matter density evolution law is considered, given by $rho_c(z) propto (1+z)^{3+epsilon}$, and constraints on $epsilon$ are obtained by using galaxy cluster gas mass fractions, and cosmic chronometers measurements. We find that $epsilon =0$ within 2$sigma$ c.l., in full agreement with other recent analyses.

قيم البحث

اقرأ أيضاً

111 - Kamal Bora , Shantanu Desai 2021
We carry out a test of the cosmic distance duality relation using a sample of 52 SPT-SZ clusters, along with X-ray measurements from XMM-Newton. To carry out this test, we need an estimate of the luminosity distance ($D_L$) at the redshift of the clu ster. For this purpose, we use three independent methods: directly using $D_L$ from the closest Type Ia Supernovae from the Union 2.1 sample, non-parametric reconstruction of $D_L$ using the same Union 2.1 sample, and finally using $H(z)$ measurements from cosmic chronometers and reconstructing $D_L$ using Gaussian Process regression. We use four different functions to characterize the deviations from CDDR. All our results for these ($4 times 3$) analyses are consistent with CDDR to within 1$sigma$.
In this paper, we discuss a model-independent way to obtain the present dark matter density parameter ($Omega_{rm{c,0}}$) by combining gas mass fraction measurements in galaxy clusters ($f_{gas}$), type Ia supernovae (SNe Ia) observations and measure ments of the cosmic baryon abundance from observations of absorption systems at high redshifts. Our estimate is $Omega_{rm{c,0}} = 0.244 pm 0.013$ ($1sigma$). By considering the latest local measurement of the Hubble constant, we obtain $Omega_{rm{M,0}} = 0.285 pm 0.013$ ($1sigma$) for the total matter density parameter. We also investigate departures of the evolution of the dark matter density with respect to the usual $a^{-3}$ scaling, as usual in interacting models of dark matter and dark energy. As the current data cannot confirm or rule out such an interaction, we perform a forecast analysis to estimate the necessary improvements in number and accuracy of upcoming $f_{gas}$ and SNe Ia observations to detect a possible non-minimal coupling in the cosmological dark sector.
Much focus was on the possible slowing down of cosmic acceleration under the dark energy parametrization. In the present paper, we investigate this subject using the Gaussian processes (GP), without resorting to a particular template of dark energy. The reconstruction is carried out by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and dynamical Hubble parameter. It suggests that slowing down of cosmic acceleration cannot be presented within 95% C.L., in considering the influence of spatial curvature and Hubble constant. In order to reveal the reason of tension between our reconstruction and previous parametrization constraint for Union2 data, we compare them and find that slowing down of acceleration in some parametrization is only a mirage. Although these parameterizations fits well with the observational data, their tension can be revealed by high order derivative of distance $D$. Instead, GP method is able to faithfully model the cosmic expansion history.
Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the $y$-redshift scenario for cosmography and use it to test the cosmographic parameters. In additi on, we also use the observational Hubble data from cosmic chronometers and a Joint analysis of both data is performed. Among the most important conclusions are that this new analysis for cosmography using Strong Lensing Systems is equally competitive to constrain the cosmographic parameters as others presented in literature. Additionally, we present the reconstruction of the effective equation of state inferred from our samples, showing that at $z=0$ those reconstructions from Strong Lensing Systems and Joint analysis are in concordance with the standard model of cosmology.
We derive a model for Sunyaev--Zeldovich data from a galaxy cluster which uses an Einasto profile to model the clusters dark matter component. This model is similar to the physical models for clusters previously used by the Arcminute Microkelvin Imag er (AMI) consortium, which model the dark matter using a Navarro-Frenk-White (NFW) profile, but the Einasto profile provides an extra degree of freedom. We thus present a comparison between two physical models which differ only in the way they model dark matter: one which uses an NFW profile (PM I) and one that uses an Einasto profile (PM II). We illustrate the differences between the models by plotting physical properties of clusters as a function of cluster radius. We generate AMI simulations of clusters which are textit{created} and textit{analysed} with both models. From this we find that for 14 of the 16 simulations, the Bayesian evidence gives no preference to either of the models according to the Jeffreys scale, and for the other two simulations, weak preference in favour of the correct model. However, for the mass estimates obtained from the analyses, the values were within $1sigma$ of the input values for 14 out of 16 of the clusters when using the correct model, but only in 6 out of 16 cases when the incorrect model was used to analyse the data. Finally we apply the models to real data from cluster A611 obtained with AMI, and find the mass estimates to be consistent with one another except in the case of when PM II is applied using an extreme value for the Einasto shape parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا