ﻻ يوجد ملخص باللغة العربية
Monocular 3D object detection is an important task in autonomous driving. It can be easily intractable where there exists ego-car pose change w.r.t. ground plane. This is common due to the slight fluctuation of road smoothness and slope. Due to the lack of insight in industrial application, existing methods on open datasets neglect the camera pose information, which inevitably results in the detector being susceptible to camera extrinsic parameters. The perturbation of objects is very popular in most autonomous driving cases for industrial products. To this end, we propose a novel method to capture camera pose to formulate the detector free from extrinsic perturbation. Specifically, the proposed framework predicts camera extrinsic parameters by detecting vanishing point and horizon change. A converter is designed to rectify perturbative features in the latent space. By doing so, our 3D detector works independent of the extrinsic parameter variations and produces accurate results in realistic cases, e.g., potholed and uneven roads, where almost all existing monocular detectors fail to handle. Experiments demonstrate our method yields the best performance compared with the other state-of-the-arts by a large margin on both KITTI 3D and nuScenes datasets.
Monocular 3D detection currently struggles with extremely lower detection rates compared to LiDAR-based methods. The poor accuracy is mainly caused by the absence of accurate location cues due to the ill-posed nature of monocular imagery. LiDAR point
Recognizing and localizing objects in the 3D space is a crucial ability for an AI agent to perceive its surrounding environment. While significant progress has been achieved with expensive LiDAR point clouds, it poses a great challenge for 3D object
Detecting and localizing objects in the real 3D space, which plays a crucial role in scene understanding, is particularly challenging given only a monocular image due to the geometric information loss during imagery projection. We propose MonoGRNet f
Data augmentation is a key component of CNN based image recognition tasks like object detection. However, it is relatively less explored for 3D object detection. Many standard 2D object detection data augmentation techniques do not extend to 3D box.
Monocular 3D object detection is an important task for autonomous driving considering its advantage of low cost. It is much more challenging than conventional 2D cases due to its inherent ill-posed property, which is mainly reflected in the lack of d