ﻻ يوجد ملخص باللغة العربية
We consider a novel baryogenesis mechanism in which the asymmetry is sourced from heavy particles which either gain their mass or are created during bubble expansion in a strong first order phase transition. The particles are inherently out-of-equilibrium and sufficiently dilute after wall crossing so -- even with order one gauge interactions -- the third Sakharov condition is easily met. Washout is avoided provided the reheat temperature is sufficiently below the scale of the heavy particles. The mechanism relies on moderate supercooling and relativistic walls which -- in contrast to electroweak baryogenesis -- leads to a sizable gravitational wave signal. We present a simple example model and discuss the restrictions on the parameter space for the mechanism to be successful. We find that high reheat temperatures $T_{rm RH} gtrsim 10^{10}$ GeV are generally preferred, whereas stronger supercooling allows for temperatures as low as $T_{rm RH} sim 10^{6}$ GeV, provided the vacuum energy density is sufficiently suppressed.
We discuss the generation of the baryon asymmetry by a strong first order electroweak phase transition in the early universe, particularly in the context of the MSSM. This requires a thorough numerical treatment of the bubble wall profile in the case
We study electroweak baryogenesis driven by the top quark in two Higgs doublet model that allows flavor-changing neutral Higgs couplings. Taking Higgs sector couplings and the additional top Yukawa coupling $rho_{tt}$ to be $mathcal{O}$(1), one natur
We study scalar bubble collisions in first-order phase transitions focusing on the relativistic limit. We propose trapping equation which describes the wall behavior after collision, and test it with numerical simulations in several setups. We also e
We study baryogenesis in effective field theories where a $mathrm{U}(1)_{ B-L}$-charged scalar couples to gravity via curvature invariants. We analyze the general possibilities in such models, noting the relationships between some of them and existin
In order to address the baryon asymmetry in the Universe one needs to understand the origin of baryon (B) and lepton (L) number violation. In this article, we discuss the mechanism of baryogenesis via leptogenesis to explain the matter-antimatter asy