ﻻ يوجد ملخص باللغة العربية
TextVQA requires models to read and reason about text in images to answer questions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it to answer TextVQA questions. In this challenge, we use generative model T5 for TextVQA task. Based on pre-trained checkpoint T5-3B from HuggingFace repository, two other pre-training tasks including masked language modeling(MLM) and relative position prediction(RPP) are designed to better align object feature and scene text. In the stage of pre-training, encoder is dedicate to handle the fusion among multiple modalities: question text, object text labels, scene text labels, object visual features, scene visual features. After that decoder generates the text sequence step-by-step, cross entropy loss is required by default. We use a large-scale scene text dataset in pre-training and then fine-tune the T5-3B with the TextVQA dataset only.
Pre-trained sequence-to-sequence (seq-to-seq) models have significantly improved the accuracy of several language generation tasks, including abstractive summarization. Although the fluency of abstractive summarization has been greatly improved by fi
Joint image-text embedding extracted from medical images and associated contextual reports is the bedrock for most biomedical vision-and-language (V+L) tasks, including medical visual question answering, clinical image-text retrieval, clinical report
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regi
Large-scale vision and language representation learning has shown promising improvements on various vision-language tasks. Most existing methods employ a transformer-based multimodal encoder to jointly model visual tokens (region-based image features