ﻻ يوجد ملخص باللغة العربية
Decomposable tasks are complex and comprise of a hierarchy of sub-tasks. Spoken intent prediction, for example, combines automatic speech recognition and natural language understanding. Existing benchmarks, however, typically hold out examples for only the surface-level sub-task. As a result, models with similar performance on these benchmarks may have unobserved performance differences on the other sub-tasks. To allow insightful comparisons between competitive end-to-end architectures, we propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our method optimally creates a test set for each sub-task to individually assess sub-components of the end-to-end model. Using spoken language understanding as a case study, we generate new splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test sets: one with held-out utterances assessing natural language understanding abilities, and one with held-out speakers to test speech processing skills. Our splits identify performance gaps up to 10% between end-to-end systems that were within 1% of each other on the original test sets. These performance gaps allow more realistic and actionable comparisons between different architectures, driving future model development. We release our splits and tools for the community.
Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals. While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of na
End-to-end spoken language understanding (SLU) models are a class of model architectures that predict semantics directly from speech. Because of their input and output types, we refer to them as speech-to-interpretation (STI) models. Previous works h
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl
End-to-end spoken language understanding (SLU) systems that process human-human or human-computer interactions are often context independent and process each turn of a conversation independently. Spoken conversations on the other hand, are very much