ترغب بنشر مسار تعليمي؟ اضغط هنا

Excited states of neutral and charged excitons in single strongly asymmetric InP-based nanostructures emitting in the telecom C band

60   0   0.0 ( 0 )
 نشر من قبل Micha{\\l} Gawe{\\l}czyk Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate strongly asymmetric self-assembled nanostructures with one of dimensions reaching hundreds of nanometers. Close to the nanowire-like type of confinement, such objects are sometimes assigned as one-dimensional in nature. Here, we directly observe the spectrum of exciton excited states corresponding to longitudinal quantization. This is based on probing the optical transitions via polarization-resolved microphotoluminescence excitation ($mu$PLE) measurement performed on single nanostructures combined with theoretical calculation of neutral and charged exciton optical properties. We successfully probe absorption-like spectra for individual bright states forming the exciton ground-state fine structure, as well as for the negatively charged exciton. Confronting the calculated spectrum of excitonic absorption with $mu$PLE traces, we identify optical transitions involving states that contain carriers at various excited levels related to the longest dimension. Based on cross-polarized excitation-detection scheme, we show very well conserved spin configuration during orbital relaxation of the exciton from a number of excited states comparable to the quasi-resonant pumping via the optical phonon, and no polarization memory for the trion, as theoretically expected.

قيم البحث

اقرأ أيضاً

In this work we demonstrate a triggered single-photon source operating at the telecom C-band with photon extraction efficiency exceeding any reported values in this range. The non-classical light emission with low probability of the multiphoton event s is realized with single InAs quantum dots (QDs) grown by molecular beam epitaxy and embedded directly in an InP matrix. Low QD spatial density on the order of 5x108 cm-2 to ~2x109 cm-2 and symmetric shape of these nanostructures together with spectral range of emission makes them relevant for quantum communication applications. The engineering of extraction efficiency is realized by combining a bottom distributed Bragg reflector consisting of 25 pairs of InP/In0.53Ga0.37Al0.1As layers and cylindrical photonic confinement structures. Realization of such technologically non-demanding approach even in a non-deterministic fashion results in photon extraction efficiency of (13.3+/-2)% into 0.4 numerical aperture detection optics at approx. 1560 nm emission wavelength, i.e., close to the center of the telecom C-band.
In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C-band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-sh elf phase modulator. The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-phase epitaxy within the transparency window of the backbone fiber optical network. A cross-correlation measurement of the sidebands demonstrates the preservation of the single photon nature; an important prerequisite for future quantum technology applications using the existing telecommunication fiber network.
Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands necessary for long-distance quantum networks. Here, we propose and implement a new optically active solid-state spin-qubit based on a hole confined in a single InAs/GaAs quantum dot grown on an InGaAs metamorphic buffer layer emitting photons in the C-band. We lift the hole spin-degeneracy using an external magnetic field and demonstrate hole injection, initialization, read-out and complete coherent control using picosecond optical pulses. These results showcase a new solid-state spin-qubit platform compatible with preexisting optical fibre networks.
Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measur ements to overcome inherent channel losses. This concept requires on-demand single-photon sources with a high degree of multi-photon suppression and high indistinguishability within each repeater node. For a successful operation of the repeater, a spectral matching of remote quantum light sources is essential. We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network based on optical fibers. A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding. Here the thin gold layer acts simultaneously as an electrical contact, strain transmission medium and broadband backside mirror for the QD-micromesa. The nanofabrication of the QD-micromesa is based on in-situ electron-beam lithography, which makes it possible to integrate pre-selected single QDs deterministically into the center of monolithic micromesa structures. The QD pre-selection is based on distinct single-QD properties, signal intensity and emission energy. In combination with strain-induced fine tuning this offers a robust method to achieve spectral resonance in the emission of remote QDs. We show that the spectral tuning has no detectable influence on the multi-photon suppression with $g^{(2)}(0)$ as low as 2-4% and that the emission can be stabilized to an accuracy of 4 $mu$eV using a closed-loop optical feedback.
Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS$_2$ encapsulated in hexagonal BN (hBN). We find that this system is an $n$-ty pe doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe$_2$, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be $gsim$-8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا