ترغب بنشر مسار تعليمي؟ اضغط هنا

Permanent variational wave functions for bosons

78   0   0.0 ( 0 )
 نشر من قبل Jiang Min Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the usefulness of the permanent state as variational wave functions for bosons, which is the bosonic counterpart of the Slater determinant state for fermions. For a system of $N$ identical bosons, a permanent state is constructed by taking a set of $N$ arbitrary (not necessarily orthonormal) single-particle orbitals, forming their product and then symmetrizing it. It is found that for the one-dimensional Bose-Hubbard model with the periodic boundary condition and at unit filling, the exact ground state can be very well approximated by a permanent state, in that the permanent state has high overlap (at least 0.96 for 12 particles and 12 sites) with the exact ground state and can reproduce both the ground state energy and the single-particle correlators to high precision. For more general models, we have devised an optimization algorithm to find the optimal set of single-particle orbitals to minimize the variational energy or maximize the overlap with a given state. It turns out that quite often the ground state of a bosonic system can be well approximated by a permanent state by all the criterions of energy, overlap, and correlation functions. And even if the error is apparent, it can often be remedied by including more configurations, i.e., by allowing the variational wave function to be the superposition of multiple permanent states.



قيم البحث

اقرأ أيضاً

224 - S. De Palo , R. Citro , E. Orignac 2019
We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.
The properties of a macroscopic assembly of weakly-repulsive bosons at zero temperature are well described by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition from superfluid to cluster supersol id as a function of pressure. We develop a thermodynamically rigorous treatment of the different phases of the system by adopting a variational formulation of the condensate wave function --- represented as a sum of Gaussians --- that is amenable to exact manipulations. Not only is this description quantitatively accurate, but it is also capable to predict the order (and sometimes even the location) of the transition. We consider a number of crystal structures in two and three dimensions and determine the phase diagram. Depending on the lattice, the transition from fluid to solid can be first-order or continuous, a lower coordination entailing a milder transition. In two dimensions, crystallization would occur at the same pressure on three distinct lattices (square, honeycomb, and stripes), all providing metastable phases with respect to the triangular crystal. A similar scenario holds in three dimensions, where the simple-cubic and diamond crystals also share a common melting point; however, the stable crystal at low pressure is typically fcc. Upon compression and depending on the shape of the potential, the fcc crystal may transform into hcp. We conclude by sketching a theory of the solid-fluid interface and of quantum nucleation of the solid from the fluid.
We establish a new geometric wave function that combined with a variational principle efficiently describes a system of bosons interacting in a one-dimensional trap. By means of a a combination of the exact wave function solution for contact interact ions and the asymptotic behaviour of the harmonic potential solution we obtain the ground state energy, probability density and profiles of a few boson system in a harmonic trap. We are able to access all regimes, ranging from the strongly attractive to the strongly repulsive one with an original and simple formulation.
We report a theoretical analysis of variational wave functions for the BCS pairing problem. Starting with a Jastrow-Feenberg (or, in a more recent language fixed-node) wave function for the superfluid state, we develop the full optimized Fermi-Hypern etted Chain (FHNC-EL) equations which sum a local approximation of the parquet-diagrams. Close examination of the procedure reveals that it is essential to go beyond the usual Jastrow-Feenberg approximation to guarantee the correct stability range.
Expanding upon previous work, using the path-integral formalism we derive expressions for the one-particle reduced density matrix and the two-point correlation function for a quadratic system of bosons that interact through a general class of memory kernels. The results are applied to study the density, condensate fraction and pair correlation function of trapped bosons harmonically coupled to external distinguishable masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا