ﻻ يوجد ملخص باللغة العربية
Epidemics are a serious public health threat, and the resources for mitigating their effects are typically limited. Decision-makers face challenges in forecasting the demand for these resources as prior information about the disease is often not available, the behaviour of the disease can periodically change (either naturally or as a result of public health policies) and can differ by geographical region. In this work, we discuss a model that is suitable for short-term real-time supply and demand forecasting during emerging outbreaks without having to rely on demographic information. We propose a data-driven mixed-integer programming (MIP) resource allocation model that assigns available resources to maximize a notion of fairness among the resource-demanding entities. Numerical results from applying our MIP model to a COVID-19 Convalescent Plasma (CCP) case study suggest that our approach can help balance the supply and demand of limited products such as CCP and minimize the unmet demand ratios of the demand entities.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic.
In distributed machine learning, data is dispatched to multiple machines for processing. Motivated by the fact that similar data points often belong to the same or similar classes, and more generally, classification rules of high accuracy tend to be
The Coronavirus Disease 2019 (COVID-19) pandemic has caused tremendous amount of deaths and a devastating impact on the economic development all over the world. Thus, it is paramount to control its further transmission, for which purpose it is necess
This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of unt
Electrical energy is a vital part of modern life, and expectations for grid resilience to allow a continuous and reliable energy supply has tremendously increased even during adverse events (e.g., Ukraine cyber-attack, Hurricane Maria). The global pa