ﻻ يوجد ملخص باللغة العربية
We report the synthesis and optical characterization of fully inorganic gradientshell CdSe/CdZnS nanocrystals (NCs) with high luminescence quantum yield (QY, 50 percent), which were obtained by replacing native oleic-acid (OA) ligands with halide ions (Br and Cl). Absorption, photoluminescence excitation (PLE) and photoluminescence (PL) spectra in solution were unaffected by the ligand-exchange procedure. The halide-capped NCs were stable in solution for several weeks without modification of their PL spectra; once deposited as unprotected thin films and exposed to air, however, they did show signs of aging which we attribute to increasing heterogeneity of (effective) NC size. Time-resolved PL measurements point to the existence of four distinct emissive states, which we attribute to neutral, singlycharged and multi-excitonic entities. We found that the relative contribution of these four components to the overall PL decay is modified by the OA-to-halide ligand exchange, while the excited-state lifetimes themselves, surprisingly, remain largley unaffected. The high PL quantum yield of the halide-capped NCs allowed observation of single particle blinking and photon-antibunching; one surprising result was that aging processes that occurs during the first few days after deposition on glass seemed to offer a certain increased protection against photobleaching. These results suggest that halide-capped CdSe/CdZnS NCs are promising candidates for incorporation into opto-electronic devices, based on, for example, hybrid perovskite matrices, which require eliminating the steric hindrance and electronic barrier of bulky organic ligands to ensure efficient coupling.
We present a theoretical description of excitons and positively and negatively charged trions in giant CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thi
Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the
We study the optical properties of a single core-shell GaAs-AlGaAs nanowire (grown by VLS method) using the technique of micro-photoluminescence and spatially-resolved photoluminescence imaging. We observe large linear polarization anisotropy in emission and excitation of nanowires.
Colloidal core/shell nanocrystals are key materials for optoelectronics, enabling control over essential properties via precise engineering of the shape, thickness, and crystal lattice structure of their shell. Here, we apply the growth protocol for
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for th