ﻻ يوجد ملخص باللغة العربية
Artificial lattices created by assembling atoms on a surface with scanning tunneling microscopy present a platform to create matter with tailored electronic, magnetic and topological properties. However, such artificial lattices studies to date have focused exclusively on surfaces with weak spin-orbit coupling. Here, we created artificial and coupled quantum dots by fabricating quantum corrals from iron atoms on the prototypical Rashba surface alloy, BiCu2, using low-temperature scanning tunneling microscopy. We quantified the quantum confinement of such quantum dots with various diameter and related this to the spatially dependent density of states, using scanning tunneling spectroscopy. We found that the density of states shows complex distributions beyond the typical isotropic patterns seen in radially symmetric structures on (111) noble metal surfaces. We related these to the energy-dependent interplay of the confinement potential with the hexagonal warping and multiple intra- and interband scattering vectors, which we simulated with a particle-in-a-box model that considers the Rashba-type band structure of BiCu2. Based on these results, we studied the effect of coupling two quantum dots and exploited the resultant anisotropic coupling derived from the symmetry of the various scattering channels. The large anisotropy and spin-orbit coupling provided by the BiCu2 platform are two key ingredients toward creation of correlated artificial lattices with non-trivial topology.
With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on co
We study a single-level quantum dot strongly coupled to a superconducting lead and tunnel-coupled to a normal electrode which can exchange energy with a single-mode resonator. We show that a such system can sustain lasing characterized by a sub-Poiss
We consider the electronic transport through a Rashba quantum dot coupled to ferromagnetic leads. We show that the interference of localized electron states with resonant electron states leads to the appearance of the Fano-Rashba effect. This effect
The Kondo effect has been observed in a single gate-tunable atom. The measurement device consists of a single As dopant incorporated in a Silicon nanostructure. The atomic orbitals of the dopant are tunable by the gate electric field. When they are t
Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons.