ﻻ يوجد ملخص باللغة العربية
In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.
We combine computable structure theory and algorithmic learning theory to study learning of families of algebraic structures. Our main result is a model-theoretic characterization of the class $mathbf{InfEx}_{cong}$, consisting of the structures whos
In several classes of countable structures it is known that every hyperarithmetic structure has a computable presentation up to bi-embeddability. In this article we investigate the complexity of embeddings between bi-embeddable structures in two such
We prove that for every Borel equivalence relation $E$, either $E$ is Borel reducible to $mathbb{E}_0$, or the family of Borel equivalence relations incompatible with $E$ has cofinal essential complexity. It follows that if $F$ is a Borel equivalence
A numbering of a countable family $S$ is a surjective map from the set of natural numbers $omega$ onto $S$. The paper studies Rogers semilattices, i.e. upper semilattices induced by the reducibility between numberings, for families $Ssubset P(omega)$
We study the computational complexity of satisfiability problems for classes of simple finite height (ortho)complemented modular lattices $L$. For single finite $L$, these problems are shown tobe $mc{NP}$-complete; for $L$ of height at least $3$, equ