ﻻ يوجد ملخص باللغة العربية
A realizer, commonly known as Schnyder woods, of a triangulation is a partition of its interior edges into three oriented rooted trees. A flip in a realizer is a local operation that transforms one realizer into another. Two types of flips in a realizer have been introduced: colored flips and cycle flips. A corresponding flip graph is defined for each of these two types of flips. The vertex sets are the realizers, and two realizers are adjacent if they can be transformed into each other by one flip. In this paper we study the relation between these two types of flips and their corresponding flip graphs. We show that a cycle flip can be obtained from linearly many colored flips. We also prove an upper bound of $O(n^2)$ on the diameter of the flip graph of realizers defined by colored flips. In addition, a data structure is given to dynamically maintain a realizer over a sequence of colored flips which supports queries, including getting a nodes barycentric coordinates, in $O(log n)$ time per flip or query.
Geographic routing is a routing paradigm, which uses geographic coordinates of network nodes to determine routes. Greedy routing, the simplest form of geographic routing forwards a packet to the closest neighbor towards the destination. A greedy embe
We propose a dynamic data structure for the distribution-sensitive point location problem. Suppose that there is a fixed query distribution in $mathbb{R}^2$, and we are given an oracle that can return in $O(1)$ time the probability of a query point f
Let $S$ be a set of $n$ sites, each associated with a point in $mathbb{R}^2$ and a radius $r_s$ and let $mathcal{D}(S)$ be the disk graph on $S$. We consider the problem of designing data structures that maintain the connectivity structure of $mathca
We consider a set of transmitters broadcasting simultaneously on the same frequency under the SINR model. Transmission power may vary from one transmitter to another, and a transmitters signal strength at a given point is modeled by the transmitters
We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present data structures that maintain a constant-factor approximate maximum independent set for broad classes of f