ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated Multi-Modal MR Imaging with Transformers

99   0   0.0 ( 0 )
 نشر من قبل Chun-Mei Feng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Accelerating multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guidance from an auxiliary modality. However, existing works simply introduce the auxiliary modality as prior information, lacking in-depth investigations on the potential mechanisms for fusing two modalities. Further, they usually rely on the convolutional neural networks (CNNs), which focus on local information and prevent them from fully capturing the long-distance dependencies of global knowledge. To this end, we propose a multi-modal transformer (MTrans), which is capable of transferring multi-scale features from the target modality to the auxiliary modality, for accelerated MR imaging. By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information. More specifically, the target modality and the auxiliary modality are first split into two branches and then fused using a multi-modal transformer module. This module is based on an improved multi-head attention mechanism, named the cross attention module, which absorbs features from the auxiliary modality that contribute to the target modality. Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods. (ii) A new cross attention module is proposed to exploit the useful information in each branch at different scales. It affords both distinct structural information and subtle pixel-level information, which supplement the target modality effectively.

قيم البحث

اقرأ أيضاً

218 - Cheng Li , Hui Sun , Zaiyi Liu 2019
Multi-modal magnetic resonance imaging (MRI) is essential in clinics for comprehensive diagnosis and surgical planning. Nevertheless, the segmentation of multi-modal MR images tends to be time-consuming and challenging. Convolutional neural network ( CNN)-based multi-modal MR image analysis commonly proceeds with multiple down-sampling streams fused at one or several layers. Although inspiring performance has been achieved, the feature fusion is usually conducted through simple summation or concatenation without optimization. In this work, we propose a supervised image fusion method to selectively fuse the useful information from different modalities and suppress the respective noise signals. Specifically, an attention block is introduced as guidance for the information selection. From the different modalities, one modality that contributes most to the results is selected as the master modality, which supervises the information selection of the other assistant modalities. The effectiveness of the proposed method is confirmed through breast mass segmentation in MR images of two modalities and better segmentation results are achieved compared to the state-of-the-art methods.
Magnetic resonance (MR) image acquisition is an inherently prolonged process, whose acceleration by obtaining multiple undersampled images simultaneously through parallel imaging has always been the subject of research. In this paper, we propose the Dual-Octave Convolution (Dual-OctConv), which is capable of learning multi-scale spatial-frequency features from both real and imaginary components, for fast parallel MR image reconstruction. By reformulating the complex operations using octave convolutions, our model shows a strong ability to capture richer representations of MR images, while at the same time greatly reducing the spatial redundancy. More specifically, the input feature maps and convolutional kernels are first split into two components (i.e., real and imaginary), which are then divided into four groups according to their spatial frequencies. Then, our Dual-OctConv conducts intra-group information updating and inter-group information exchange to aggregate the contextual information across different groups. Our framework provides two appealing benefits: (i) it encourages interactions between real and imaginary components at various spatial frequencies to achieve richer representational capacity, and (ii) it enlarges the receptive field by learning multiple spatial-frequency features of both the real and imaginary components. We evaluate the performance of the proposed model on the acceleration of multi-coil MR image reconstruction. Extensive experiments are conducted on an {in vivo} knee dataset under different undersampling patterns and acceleration factors. The experimental results demonstrate the superiority of our model in accelerated parallel MR image reconstruction. Our code is available at: github.com/chunmeifeng/Dual-OctConv.
We present a deep network interpolation strategy for accelerated parallel MR image reconstruction. In particular, we examine the network interpolation in parameter space between a source model that is formulated in an unrolled scheme with L1 and SSIM losses and its counterpart that is trained with an adversarial loss. We show that by interpolating between the two different models of the same network structure, the new interpolated network can model a trade-off between perceptual quality and fidelity.
Purpose: To develop a deep learning method on a nonlinear manifold to explore the temporal redundancy of dynamic signals to reconstruct cardiac MRI data from highly undersampled measurements. Methods: Cardiac MR image reconstruction is modeled as g eneral compressed sensing (CS) based optimization on a low-rank tensor manifold. The nonlinear manifold is designed to characterize the temporal correlation of dynamic signals. Iterative procedures can be obtained by solving the optimization model on the manifold, including gradient calculation, projection of the gradient to tangent space, and retraction of the tangent space to the manifold. The iterative procedures on the manifold are unrolled to a neural network, dubbed as Manifold-Net. The Manifold-Net is trained using in vivo data with a retrospective electrocardiogram (ECG)-gated segmented bSSFP sequence. Results: Experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with a compressed sensing (CS) method k-t SLR and two state-of-the-art deep learning-based methods, DC-CNN and CRNN. Conclusion: This work represents the first study unrolling the optimization on manifolds into neural networks. Specifically, the designed low-rank manifold provides a new technical route for applying low-rank priors in dynamic MR imaging.
Automatic and accurate segmentation of the ventricles and myocardium from multi-sequence cardiac MRI (CMR) is crucial for the diagnosis and treatment management for patients suffering from myocardial infarction (MI). However, due to the existence of domain shift among different modalities of datasets, the performance of deep neural networks drops significantly when the training and testing datasets are distinct. In this paper, we propose an unsupervised domain alignment method to explicitly alleviate the domain shifts among different modalities of CMR sequences, emph{e.g.,} bSSFP, LGE, and T2-weighted. Our segmentation network is attention U-Net with pyramid pooling module, where multi-level feature space and output space adversarial learning are proposed to transfer discriminative domain knowledge across different datasets. Moreover, we further introduce a group-wise feature recalibration module to enforce the fine-grained semantic-level feature alignment that matching features from different networks but with the same class label. We evaluate our method on the multi-sequence cardiac MR Segmentation Challenge 2019 datasets, which contain three different modalities of MRI sequences. Extensive experimental results show that the proposed methods can obtain significant segmentation improvements compared with the baseline models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا