ﻻ يوجد ملخص باللغة العربية
Large persistent memories such as NVDIMM have been perceived as a disruptive memory technology, because they can maintain the state of a system even after a power failure and allow the system to recover quickly. However, overheads incurred by a heavy software-stack intervention seriously negate the benefits of such memories. First, to significantly reduce the software stack overheads, we propose HAMS, a hardware automated Memory-over-Storage (MoS) solution. Specifically, HAMS aggregates the capacity of NVDIMM and ultra-low latency flash archives (ULL-Flash) into a single large memory space, which can be used as a working or persistent memory expansion, in an OS-transparent manner. HAMS resides in the memory controller hub and manages its MoS address pool over conventional DDR and NVMe interfaces; it employs a simple hardware cache to serve all the memory requests from the host MMU after mapping the storage space of ULL-Flash to the memory space of NVDIMM. Second, to make HAMS more energy-efficient and reliable, we propose an advanced HAMS which removes unnecessary data transfers between NVDIMM and ULL-Flash after optimizing the datapath and hardware modules of HAMS. This approach unleashes the ULL-Flash and its NVMe controller from the storage box and directly connects the HAMS datapath to NVDIMM over the conventional DDR4 interface. Our evaluations show that HAMS and advanced HAMS can offer 97% and 119% higher system performance than a software-based hybrid NVDIMM design, while consuming 41% and 45% lower system energy, respectively.
The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, cons
Memory is an indispensable element for computer besides logic gates. In this Letter we report a model of thermal memory. We demonstrate via numerical simulation that thermal (phononic) information stored in the memory can be retained for a long time
Deep Neural Networks (DNNs) have achieved tremendous success for cognitive applications. The core operation in a DNN is the dot product between quantized inputs and weights. Prior works exploit the weight/input repetition that arises due to quantizat
Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the qu
153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we