ترغب بنشر مسار تعليمي؟ اضغط هنا

The importance of nuclear quantum effects for NMR crystallography

244   0   0.0 ( 0 )
 نشر من قبل Edgar Engel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resolving power of solid-state nuclear magnetic resonance (NMR) crystallography depends heavily on the accuracy of the computational prediction of NMR chemical shieldings of candidate structures, which are usually taken to be local minima in the potential energy surface. To test the limits of this approximation, we perform a systematic study of the role of finite-temperature and quantum nuclear fluctuations on $^1$H, $^{13}$C, and $^{15}$N chemical shieldings in molecular crystals -- considering the paradigmatic examples of the different polymorphs of benzene, glycine, and succinic acid. We find the effect of quantum fluctuations to be comparable in size to the typical errors of predictions of chemical shieldings for static nuclei with respect to experimental measurements, and to improve the match between experiments and theoretical predictions, translating to more reliable assignment of the NMR spectra to the correct candidate structure. Thanks to the use of integrated machine-learning models trained on both first-principles configurational energies and chemical shieldings, the accurate sampling of thermal and quantum fluctuations of the structures can be achieved at an affordable cost, setting a new standard for the calculations that underlie solid-state structural determination by NMR.

قيم البحث

اقرأ أيضاً

Path-integral ab initio molecular dynamics (PI-AIMD) calculations have been employed to probe the nature of chloride ion solvation in aqueous solution. Nuclear quantum effects (NQEs) are shown to weaken hydrogen bonding between the chloride anion and the solvation shell of water molecules. As a consequence, the disruptive effect of the anion on the solvent water structure is significantly reduced compared to what is found in the absence of NQEs. The chloride hydration structure obtained from PI-AIMD agrees well with information extracted from neutron scattering data. Inparticular, the observed satellite peak in the hydrogen-chloride-hydrogen triple angular distribution serves as a clear signature of NQEs. The present results suggest that NQEs are likely to play acrucial role in determining the structure of saline solutions.
Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor $boldsymbol{beta}^{(2)}$. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant $boldsymbol{beta}^{(2)}$. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H$_2$O and D$_2$O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments.
The energies of molecular excited states arise as solutions to the electronic Schr{o}dinger equation and are often compared to experiment. At the same time, nuclear quantum motion is known to be important and to induce a red-shift of excited state en ergies. However, it is thus far unclear whether incorporating nuclear quantum motion in molecular excited state calculations leads to a systematic improvement of their predictive accuracy, making further investigation necessary. Here we present such an investigation by employing two first-principles methods for capturing the effect of quantum fluctuations on excited state energies, which we apply to the Thiel set of organic molecules. We show that accounting for zero-point motion leads to much improved agreement with experiment, compared to `static calculations which only account for electronic effects, and the magnitude of the red-shift can become as large as 1.36 eV. Moreover, we show that the effect of nuclear quantum motion on excited state energies largely depends on the molecular size, with smaller molecules exhibiting larger red-shifts. Our methodology also makes it possible to analyze the contribution of individual vibrational normal modes to the red-shift of excited state energies, and in several molecules we identify a limited number of modes dominating this effect. Overall, our study provides a foundation for systematically quantifying the shift of excited state energies due to nuclear quantum motion, and for understanding this effect at a microscopic level.
We present a detailed study of the nuclear quantum effects in H/D sticking to graphene, comparing classical, quantum and mixed quantum/classical simulations to results of scattering experiments. Agreement with experimentally derived sticking probabil ities is improved when nuclear quantum effects are included using ring polymer molecular dynamics. Specifically, the quantum motion of the carbon atoms enhances sticking, showing that an accurate description of graphene phonons is important to capturing the adsorption dynamics. We also find an inverse H/D isotope effect arising from Newtonian mechanics.
Accurate description of the excess charge in water cluster anions is challenging for standard semi-local and (global) hybrid density functional approximations (DFAs). Using the recent unitary invariant implementation of the Perdew-Zunger self-interac tion correction (SIC) method using Fermi-Lowdin orbitals, we assess the effect of self-interaction error on the vertical detachment energies of water clusters anions with the local spin density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the strongly constrained and appropriately normed (SCAN) meta-GGA functionals. Our results show that for the relative energies of isomers with respect to reference CCSD(T) values, the uncorrected SCAN functional has the smallest deviation of 21 meV, better than that for the MP2 method. The performance of SIC-SCAN is comparable to that of MP2 and is better than SIC-LSDA and SIC-PBE, but it reverses the ordering of the two lowest isomers for water hexamer anions. Removing self interaction error (SIE) corrects the tendency of LSDA, PBE, and SCAN to over-bind the extra electron. The vertical detachment energies (VDEs) of water cluster anions, obtained from the total energy differences of corresponding anion and neutral clusters, are significantly improved by removing self-interaction and are better than the hybrid B3LYP functional, but fall short of MP2 accuracy. Removing SIE results in substantial improvement in the position of the eigenvalue of the extra electron. The negative of the highest occupied eigenvalue after SIC provides an excellent approximation to the VDE, especially for SIC-PBE where the mean absolute error with respect to CCSD(T) is only 17 meV, the best among all approximations compared in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا