ﻻ يوجد ملخص باللغة العربية
Face anti-spoofing (FAS) is an indispensable and widely used module in face recognition systems. Although high accuracy has been achieved, a FAS system will never be perfect due to the non-stationary applied environments and the potential emergence of new types of presentation attacks in real-world applications. In practice, given a handful of labeled samples from a new deployment scenario (target domain) and abundant labeled face images in the existing source domain, the FAS system is expected to perform well in the new scenario without sacrificing the performance on the original domain. To this end, we identify and address a more practical problem: Few-Shot Domain Expansion for Face Anti-Spoofing (FSDE-FAS). This problem is challenging since with insufficient target domain training samples, the model may suffer from both overfitting to the target domain and catastrophic forgetting of the source domain. To address the problem, this paper proposes a Style transfer-based Augmentation for Semantic Alignment (SASA) framework. We propose to augment the target data by generating auxiliary samples based on photorealistic style transfer. With the assistant of the augmented data, we further propose a carefully designed mechanism to align different domains from both instance-level and distribution-level, and then stabilize the performance on the source domain with a less-forgetting constraint. Two benchmarks are proposed to simulate the FSDE-FAS scenarios, and the experimental results show that the proposed SASA method outperforms state-of-the-art methods.
Face anti-spoofing is crucial to the security of face recognition systems. Most previous methods formulate face anti-spoofing as a supervised learning problem to detect various predefined presentation attacks, which need large scale training data to
Although current face anti-spoofing methods achieve promising results under intra-dataset testing, they suffer from poor generalization to unseen attacks. Most existing works adopt domain adaptation (DA) or domain generalization (DG) techniques to ad
We address the problem of face anti-spoofing which aims to make the face verification systems robust in the real world settings. The context of detecting live vs. spoofed face images may differ significantly in the target domain, when compared to tha
Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios. Existing DG methods assume that the do-main label is known.However, in real-world applications, thecollected dataset