ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Shot Domain Expansion for Face Anti-Spoofing

98   0   0.0 ( 0 )
 نشر من قبل Bowen Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face anti-spoofing (FAS) is an indispensable and widely used module in face recognition systems. Although high accuracy has been achieved, a FAS system will never be perfect due to the non-stationary applied environments and the potential emergence of new types of presentation attacks in real-world applications. In practice, given a handful of labeled samples from a new deployment scenario (target domain) and abundant labeled face images in the existing source domain, the FAS system is expected to perform well in the new scenario without sacrificing the performance on the original domain. To this end, we identify and address a more practical problem: Few-Shot Domain Expansion for Face Anti-Spoofing (FSDE-FAS). This problem is challenging since with insufficient target domain training samples, the model may suffer from both overfitting to the target domain and catastrophic forgetting of the source domain. To address the problem, this paper proposes a Style transfer-based Augmentation for Semantic Alignment (SASA) framework. We propose to augment the target data by generating auxiliary samples based on photorealistic style transfer. With the assistant of the augmented data, we further propose a carefully designed mechanism to align different domains from both instance-level and distribution-level, and then stabilize the performance on the source domain with a less-forgetting constraint. Two benchmarks are proposed to simulate the FSDE-FAS scenarios, and the experimental results show that the proposed SASA method outperforms state-of-the-art methods.

قيم البحث

اقرأ أيضاً

Face anti-spoofing is crucial to the security of face recognition systems. Most previous methods formulate face anti-spoofing as a supervised learning problem to detect various predefined presentation attacks, which need large scale training data to cover as many attacks as possible. However, the trained model is easy to overfit several common attacks and is still vulnerable to unseen attacks. To overcome this challenge, the detector should: 1) learn discriminative features that can generalize to unseen spoofing types from predefined presentation attacks; 2) quickly adapt to new spoofing types by learning from both the predefined attacks and a few examples of the new spoofing types. Therefore, we define face anti-spoofing as a zero- and few-shot learning problem. In this paper, we propose a novel Adaptive Inner-update Meta Face Anti-Spoofing (AIM-FAS) method to tackle this problem through meta-learning. Specifically, AIM-FAS trains a meta-learner focusing on the task of detecting unseen spoofing types by learning from predefined living and spoofing faces and a few examples of new attacks. To assess the proposed approach, we propose several benchmarks for zero- and few-shot FAS. Experiments show its superior performances on the presented benchmarks to existing methods in existing zero-shot FAS protocols.
Although current face anti-spoofing methods achieve promising results under intra-dataset testing, they suffer from poor generalization to unseen attacks. Most existing works adopt domain adaptation (DA) or domain generalization (DG) techniques to ad dress this problem. However, the target domain is often unknown during training which limits the utilization of DA methods. DG methods can conquer this by learning domain invariant features without seeing any target data. However, they fail in utilizing the information of target data. In this paper, we propose a self-domain adaptation framework to leverage the unlabeled test domain data at inference. Specifically, a domain adaptor is designed to adapt the model for test domain. In order to learn a better adaptor, a meta-learning based adaptor learning algorithm is proposed using the data of multiple source domains at the training step. At test time, the adaptor is updated using only the test domain data according to the proposed unsupervised adaptor loss to further improve the performance. Extensive experiments on four public datasets validate the effectiveness of the proposed method.
We address the problem of face anti-spoofing which aims to make the face verification systems robust in the real world settings. The context of detecting live vs. spoofed face images may differ significantly in the target domain, when compared to tha t of labeled source domain where the model is trained. Such difference may be caused due to new and unknown spoof types, illumination conditions, scene backgrounds, among many others. These varieties of differences make the target a compound domain, thus calling for the problem of the unsupervised compound domain adaptation. We demonstrate the effectiveness of the compound domain assumption for the task of face anti-spoofing, for the first time in this work. To this end, we propose a memory augmentation method for adapting the source model to the target domain in a domain aware manner. The adaptation process is further improved by using the curriculum learning and the domain agnostic source network training approaches. The proposed method successfully adapts to the compound target domain consisting multiple new spoof types. Our experiments on multiple benchmark datasets demonstrate the superiority of the proposed method over the state-of-the-art.
Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all existing systems. We define the detection of unknown spoof attacks as Zero-Shot Face Anti-spoofing (ZSFA). Previous works of ZSFA only study 1-2 types of spoof attacks, such as print/replay attacks, which limits the insight of this problem. In this work, we expand the ZSFA problem to a wide range of 13 types of spoof attacks, including print attack, replay attack, 3D mask attacks, and so on. A novel Deep Tree Network (DTN) is proposed to tackle the ZSFA. The tree is learned to partition the spoof samples into semantic sub-groups in an unsupervised fashion. When a data sample arrives, being know or unknown attacks, DTN routes it to the most similar spoof cluster, and make the binary decision. In addition, to enable the study of ZSFA, we introduce the first face anti-spoofing database that contains diverse types of spoof attacks. Experiments show that our proposed method achieves the state of the art on multiple testing protocols of ZSFA.
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios. Existing DG methods assume that the do-main label is known.However, in real-world applications, thecollected dataset always contains mixture domains, where thedomain label is unknown. In this case, most of existing meth-ods may not work. Further, even if we can obtain the domainlabel as existing methods, we think this is just a sub-optimalpartition. To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels, which iteratively divides mixture domains viadiscriminative domain representation and trains a generaliz-able face anti-spoofing with meta-learning. Specifically, wedesign a domain feature based on Instance Normalization(IN) and propose a domain representation learning module(DRLM) to extract discriminative domain features for cluster-ing. Moreover, to reduce the side effect of outliers on cluster-ing performance, we additionally utilize maximum mean dis-crepancy (MMD) to align the distribution of sample featuresto a prior distribution, which improves the reliability of clus tering. Extensive experiments show that the proposed methodoutperforms conventional DG-based face anti-spoofing meth-ods, including those utilizing domain labels. Furthermore, weenhance the interpretability through visualizatio
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا