ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Grasp Planning Efficiency with Human Grasp Tendencies*

82   0   0.0 ( 0 )
 نشر من قبل Cheng Chang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

After a grasp has been planned, if the object orientation changes, the initial grasp may but not always have to be modified to accommodate the orientation change. For example, rotation of a cylinder by any amount around its centerline does not change its geometric shape relative to the grasper. Objects that can be approximated to solids of revolution or contain other geometric symmetries are prevalent in everyday life, and this information can be employed to improve the efficiency of existing grasp planning models. This paper experimentally investigates change in human-planned grasps under varied object orientations. With 13,440 recorded human grasps, our results indicate that during pick-and-place task of ordinary objects, stable grasps can be achieved with a small subset of grasp types, and the wrist-related parameters follow normal distribution. Furthermore, we show this knowledge can allow faster convergence of grasp planning algorithm.

قيم البحث

اقرأ أيضاً

This work provides a framework for a workspace aware online grasp planner. This framework greatly improves the performance of standard online grasp planning algorithms by incorporating a notion of reachability into the online grasp planning process. Offline, a database of hundreds of thousands of unique end-effector poses were queried for feasability. At runtime, our grasp planner uses this database to bias the hand towards reachable end-effector configurations. The bias keeps the grasp planner in accessible regions of the planning scene so that the resulting grasps are tailored to the situation at hand. This results in a higher percentage of reachable grasps, a higher percentage of successful grasp executions, and a reduced planning time. We also present experimental results using simulated and real environments.
Rotational displacement about the grasping point is a common grasp failure when an object is grasped at a location away from its center of gravity. Tactile sensors with soft surfaces, such as GelSight sensors, can detect the rotation patterns on the contacting surfaces when the object rotates. In this work, we propose a model-based algorithm that detects those rotational patterns and measures rotational displacement using the GelSight sensor. We also integrate the rotation detection feedback into a closed-loop regrasping framework, which detects the rotational failure of grasp in an early stage and drives the robot to a stable grasp pose. We validate our proposed rotation detection algorithm and grasp-regrasp system on self-collected dataset and online experiments to show how our approach accurately detects the rotation and increases grasp stability.
Customized grippers have broad applications in industrial assembly lines. Compared with general parallel grippers, the customized grippers have specifically designed fingers to increase the contact area with the workpieces and improve the grasp robus tness. However, grasp planning for customized grippers is challenging due to the object variations, surface contacts and structural constraints of the grippers. In this paper, an iterative surface fitting (ISF) algorithm is proposed to plan grasps for customized grippers. ISF simultaneously searches for optimal gripper transformation and finger displacement by minimizing the surface fitting error. A guided sampling is introduced to avoid ISF getting stuck in local optima and improve the collision avoidance performance. The proposed algorithm is able to consider the structural constraints of the gripper and plan optimal grasps in real-time. The effectiveness of the algorithm is verified by both simulations and experiments. The experimental videos are available at: http://me.berkeley.edu/%7Eyongxiangfan/CASE2018/caseisf.html
We present an ensemble learning methodology that combines multiple existing robotic grasp synthesis algorithms and obtain a success rate that is significantly better than the individual algorithms. The methodology treats the grasping algorithms as ex perts providing grasp opinions. An Ensemble Convolutional Neural Network (ECNN) is trained using a Mixture of Experts (MOE) model that integrates these opinions and determines the final grasping decision. The ECNN introduces minimal computational cost overhead, and the network can virtually run as fast as the slowest expert. We test this architecture using open-source algorithms in the literature by adopting GQCNN 4.0, GGCNN and a custom variation of GGCNN as experts and obtained a 6% increase in the grasp success on the Cornell Dataset compared to the best-performing individual algorithm. The performance of the method is also demonstrated using a Franka Emika Panda arm.
Robotic grasp detection is a fundamental capability for intelligent manipulation in unstructured environments. Previous work mainly employed visual and tactile fusion to achieve stable grasp, while, the whole process depending heavily on regrasping, which wastes much time to regulate and evaluate. We propose a novel way to improve robotic grasping: by using learned tactile knowledge, a robot can achieve a stable grasp from an image. First, we construct a prior tactile knowledge learning framework with novel grasp quality metric which is determined by measuring its resistance to external perturbations. Second, we propose a multi-phases Bayesian Grasp architecture to generate stable grasp configurations through a single RGB image based on prior tactile knowledge. Results show that this framework can classify the outcome of grasps with an average accuracy of 86% on known objects and 79% on novel objects. The prior tactile knowledge improves the successful rate of 55% over traditional vision-based strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا