ترغب بنشر مسار تعليمي؟ اضغط هنا

Discriminating between different scenarios for the formation and evolution of massive black holes with LISA

77   0   0.0 ( 0 )
 نشر من قبل Alexandre Toubiana
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetic observations have provided strong evidence for the existence of massive black holes in the center of galaxies, but their origin is still poorly known. Different scenarios for the formation and evolution of massive black holes lead to different predictions for their properties and merger rates. LISA observations of coalescing massive black hole binaries could be used to reverse engineer the problem and shed light on these mechanisms. In this paper, we introduce a pipeline based on hierarchical Bayesian inference to infer the mixing fraction between different theoretical models by comparing them to LISA observations of massive black hole mergers. By testing this pipeline against simulated LISA data, we show that it allows us to accurately infer the properties of the massive black hole population as long as our theoretical models provide a reliable description of the Universe. We also show that measurement errors, including both instrumental noise and weak lensing errors, have little impact on the inference.


قيم البحث

اقرأ أيضاً

We study the angular resolution of the gravitational wave detector LISA and show that numerical relativity can drastically improve the accuracy of position location for coalescing Super Massive Black Hole (SMBH) binaries. For systems with total redsh ifted mass above $10^7 M_{odot}$, LISA will mainly see the merger and ring-down of the gravitational wave (GW) signal, which can now be computed numerically using the full Einstein equations. Using numerical waveforms that also include about ten GW cycles of inspiral, we improve inspiral-only position estimates by an order of magnitude. We show that LISA localizes half of all such systems at $z=1$ to better than 3 arcminutes and the best 20% to within one arcminute. This will give excellent prospects for identifying the host galaxy.
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the popu lation of BH masses and spins, and a continuous monochromatic GW signal. We show that the presence of a binary companion greatly enriches the dynamical evolution of the system, most remarkably through the existence of resonant transitions between the growing and decaying modes of the cloud (analogous to Rabi oscillations in atomic physics). These resonances have rich phenomenological implications for current and future GW detectors. Notably, the amplitude of the GW signal from the clouds may be reduced, and in many cases terminated, much before the binary merger. The presence of a boson cloud can also be revealed in the GW signal from the binary through the imprint of finite-size effects, such as spin-induced multipole moments and tidal Love numbers. The time dependence of the clouds energy density during the resonance leads to a sharp feature, or at least attenuation, in the contribution from the finite-size terms to the waveforms. The observation of these effects would constrain the properties of putative ultralight bosons through precision GW data, offering new probes of physics beyond the Standard Model.
107 - Pau Amaro-Seoane 2020
The gravitational capture of a stellar-mass compact object (CO) by a supermassive black hole is a unique probe of gravity in the strong field regime. Because of the large mass ratio, we call these sources extreme-mass ratio inspirals (EMRIs). In a si milar manner, COs can be captured by intermediate-mass black holes in globular clusters or dwarf galaxies. The mass ratio in this case is lower, and hence we refer to the system as an intermediate-mass ratio inspiral (IMRI). Also, sub-stellar objects such as a brown dwarf, with masses much lighter than our Sun, can inspiral into supermassive black holes such as Sgr A* at our Galactic centre. In this case, the mass ratio is extremely large and, hence, we call this system ab extremely-large mass ratio inspirals (XMRIs). All of these sources of gravitational waves will provide us with a collection of snapshots of spacetime around a supermassive black hole that will allow us to do a direct mapping of warped spacetime around the supermassive black hole, a live cartography of gravity in this extreme gravity regime. E/I/XMRIs will be detected by the future space-borne observatories like LISA. There has not been any other probe conceived, planned or even thought of ever that can do the science that we can do with these inspirals. We will discuss them from a viewpoint of relativistic astrophysics.
89 - Jahed Abedi 2020
Black Holes are possibly the most enigmatic objects in our Universe. From their detection in gravitational waves upon their mergers, to their snapshot eating at the centres of galaxies, black hole astrophysics has undergone an observational renaissan ce in the past 4 years. Nevertheless, they remain active playgrounds for strong gravity and quantum effects, where novel aspects of the elusive theory of quantum gravity may be hard at work. In this review article, we provide an overview of the strong motivations for why Quantum Black Holes may be radically different from their classical counterparts in Einsteins General Relativity. We then discuss the observational signatures of quantum black holes, focusing on gravitational wave echoes as smoking guns for quantum horizons (or exotic compact objects), which have led to significant recent excitement and activity. We review the theoretical underpinning of gravitational wave echoes and critically examine the seemingly contradictory observational claims regarding their (non-)existence. Finally, we discuss the future theoretical and observational landscape for unraveling the Quantum Black Holes in the Sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا