ﻻ يوجد ملخص باللغة العربية
Contrary to a driven classical system that exhibits chaos phenomena and diffusive energy growth, a driven quantum system can exhibit dynamical localization that features energy saturation. However, the evolution of the dynamically localized state in the presence of many-body interactions has for long remained an open question. Here we realize a many-body quantum kicked rotor with a 1D ultracold gas periodically kicked by a pulsed optical lattice, and observe the interaction-driven emergence of dynamical delocalization. The dynamics feature a sub-diffusive energy growth which is manifest over a broad parameter range of interaction strengths and kick strengths. This observed onset of many-body quantum chaos and its characterization by the accompanying theoretical modeling introduce new tools to study many-body localization-delocalization phenomena in the synthetic momentum space.
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version th
Closed generic quantum many-body systems may fail to thermalize under certain conditions even after long times, a phenomenon called many-body localization (MBL). Numerous studies support the stability of the MBL phase in strongly disordered one-dimen
We report the direct observation and characterization of position-space Bloch oscillations using an ultracold gas in a tilted optical lattice. While Bloch oscillations in momentum space are a common feature of optical lattice experiments, the real-sp
We have analyzed our recently-measured three-body loss rate coefficient for a Bose-Einstein condensate of spin-polarized metastable triplet 4He atoms in terms of Efimov physics. The large value of the scattering length for these atoms, which provides