ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of galaxies in the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space

158   0   0.0 ( 0 )
 نشر من قبل Eva-Maria Mueller
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the local primordial non-Gaussianity parameter fNLloc from the clustering of 343,708 quasars with redshifts 0.8 < z < 2.2 distributed over 4808 square degrees from the final data release (DR16) of the extended Baryon acoustic Oscillation Spectroscopic Survey (eBOSS), the largest volume spectroscopic survey up to date. Our analysis is performed in Fourier space, using the power spectrum monopole at very large scales to constrain the scale dependent halo bias. We carefully assess the impact of systematics on our measurement and test multiple contamination removal methods. We demonstrate the robustness of our analysis pipeline with EZ-mock catalogues that simulate the eBOSS DR16 target selection. We find $f_mathrm{NL}=-12pm 21$ (68% confidence) for the main clustering sample including quasars with redshifts between 0.8 and 2.2, after exploiting a novel neural network scheme for cleaning the DR16 sample and in particular after applying redshift weighting techniques, designed for non-Gaussianity measurement from large scales structure, to optimize our analysis, which improve our results by 37%.



قيم البحث

اقرأ أيضاً

We investigate the large-scale clustering of the final spectroscopic sample of quasars from the recently completed extended Baryon Oscillation Spectroscopic Survey (eBOSS). The sample contains $343708$ objects in the redshift range $0.8<z<2.2$ and $7 2667$ objects with redshifts $2.2<z<3.5$, covering an effective area of $4699~{rm deg}^{2}$. We develop a neural network-based approach to mitigate spurious fluctuations in the density field caused by spatial variations in the quality of the imaging data used to select targets for follow-up spectroscopy. Simulations are used with the same angular and radial distributions as the real data to estimate covariance matrices, perform error analyses, and assess residual systematic uncertainties. We measure the mean density contrast and cross-correlations of the eBOSS quasars against maps of potential sources of imaging systematics to address algorithm effectiveness, finding that the neural network-based approach outperforms standard linear regression. Stellar density is one of the most important sources of spurious fluctuations, and a new template constructed using data from the Gaia spacecraft provides the best match to the observed quasar clustering. The end-product from this work is a new value-added quasar catalogue with the improved weights to correct for nonlinear imaging systematic effects, which will be made public. Our quasar catalogue is used to measure the local-type primordial non-Gaussianity in our companion paper, Mueller et al. in preparation.
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset include s $1,198,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6%$ and $1.5%$ constraints on $D_A(z)$ and $2.9%$ and $2.3%$ constraints on $H(z)$ for the low ($zeff=0.38$) and high ($zeff=0.61$) redshift bin, respectively. We obtain two independent $1%$ and $0.9%$ constraints on the angular averaged distance $D_V(z)$, when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of $8sigma$ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1,198,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10,252,$deg$^2$. We an alyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $fsigma_8$ at $z_{rm eff}=0.61$ indicates a small ($sim 1.4sigma$) deviation from the prediction of the Planck $Lambda$CDM model, the low-redshift constraint is in good agreement with Planck $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We analyze the density field of 264,283 galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) and included in the SDSS data release nine (DR9). In total, the SDSS DR9 BOSS data includes spectrosco pic redshifts for over 400,000 galaxies spread over a footprint of more than 3,000 deg^2. We measure the power spectrum of these galaxies with redshifts 0.43 < z < 0.7 in order to constrain the amount of local non-Gaussianity, f_NL,local, in the primordial density field, paying particular attention to the impact of systematic uncertainties. The BOSS galaxy density field is systematically affected by the local stellar density and this influences the ability to accurately measure f_NL,local. In the absence of any correction, we find (erroneously) that the probability that f_NL,local is greater than zero, P(f_NL,local >0), is 99.5%. After quantifying and correcting for the systematic bias and including the added uncertainty, we find -45 < f_NL,local < 195 at 95% confidence, and P(f_NL,local >0) = 91.0%. A more conservative approach assumes that we have only learned the k-dependence of the systematic bias and allows any amplitude for the systematic correction; we find that the systematic effect is not fully degenerate with that of f_NL,local, and we determine that -82 < f_NL,local < 178 (at 95% confidence) and P(f_NL,local >0) = 68%. This analysis demonstrates the importance of accounting for the impact of Galactic foregrounds on f_NL,local measurements. We outline the methods that account for these systematic biases and uncertainties. We expect our methods to yield robust constraints on f_NL,local for both our own and future large-scale-structure investigations.
We develop a series of N-body data challenges, functional to the final analysis of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16) galaxy sample. The challenges are primarily based on high-fidelity catalogs constru cted from the Outer Rim simulation - a large box size realization (3 Gpc/h) characterized by an unprecedented combination of volume and mass resolution, down to 1.85x10^9 M_sun/h. We generate synthetic galaxy mocks by populating Outer Rim halos with a variety of halo occupation distribution (HOD) schemes of increasing complexity, spanning different redshift intervals. We then assess the performance of three complementary redshift space distortion (RSD) models in configuration and Fourier space, adopted for the analysis of the complete DR16 eBOSS sample of Luminous Red Galaxies (LRGs). We find all the methods mutually consistent, with comparable systematic errors on the Alcock-Paczynski parameters and the growth of structure, and robust to different HOD prescriptions - thus validating the robustness of the models and the pipelines used for the baryon acoustic oscillation (BAO) and full shape clustering analysis. In particular, all the techniques are able to recover a_par and a_perp to within 0.9%, and fsig8 to within 1.5%. As a by-product of our work, we are also able to gain interesting insights on the galaxy-halo connection. Our study is relevant for the final eBOSS DR16 `consensus cosmology, as the systematic error budget is informed by testing the results of analyses against these high-resolution mocks. In addition, it is also useful for future large-volume surveys, since similar mock-making techniques and systematic corrections can be readily extended to model for instance the Dark Energy Spectroscopic Instrument (DESI) galaxy sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا