ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Sample Replacements for ELECTRA Pre-Training

103   0   0.0 ( 0 )
 نشر من قبل Li Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

ELECTRA pretrains a discriminator to detect replaced tokens, where the replacements are sampled from a generator trained with masked language modeling. Despite the compelling performance, ELECTRA suffers from the following two issues. First, there is no direct feedback loop from discriminator to generator, which renders replacement sampling inefficient. Second, the generators prediction tends to be over-confident along with training, making replacements biased to correct tokens. In this paper, we propose two methods to improve replacement sampling for ELECTRA pre-training. Specifically, we augment sampling with a hardness prediction mechanism, so that the generator can encourage the discriminator to learn what it has not acquired. We also prove that efficient sampling reduces the training variance of the discriminator. Moreover, we propose to use a focal loss for the generator in order to relieve oversampling of correct tokens as replacements. Experimental results show that our method improves ELECTRA pre-training on various downstream tasks.

قيم البحث

اقرأ أيضاً

In this paper, we introduce ELECTRA-style tasks to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrai n the model, named as XLM-E, on both multilingual and parallel corpora. Our model outperforms the baseline models on various cross-lingual understanding tasks with much less computation cost. Moreover, analysis shows that XLM-E tends to obtain better cross-lingual transferability.
Pre-trained text encoders such as BERT and its variants have recently achieved state-of-the-art performances on many NLP tasks. While being effective, these pre-training methods typically demand massive computation resources. To accelerate pre-traini ng, ELECTRA trains a discriminator that predicts whether each input token is replaced by a generator. However, this new task, as a binary classification, is less semantically informative. In this study, we present a new text encoder pre-training method that improves ELECTRA based on multi-task learning. Specifically, we train the discriminator to simultaneously detect replaced tokens and select original tokens from candidate sets. We further develop two techniques to effectively combine all pre-training tasks: (1) using attention-based networks for task-specific heads, and (2) sharing bottom layers of the generator and the discriminator. Extensive experiments on GLUE and SQuAD datasets demonstrate both the effectiveness and the efficiency of our proposed method.
Pre-trained self-supervised models such as BERT have achieved striking success in learning sequence representations, especially for natural language processing. These models typically corrupt the given sequences with certain types of noise, such as m asking, shuffling, or substitution, and then try to recover the original input. However, such pre-training approaches are prone to learning representations that are covariant with the noise, leading to the discrepancy between the pre-training and fine-tuning stage. To remedy this, we present ContrAstive Pre-Training (CAPT) to learn noise invariant sequence representations. The proposed CAPT encourages the consistency between representations of the original sequence and its corrupted version via unsupervised instance-wise training signals. In this way, it not only alleviates the pretrain-finetune discrepancy induced by the noise of pre-training, but also aids the pre-trained model in better capturing global semantics of the input via more effective sentence-level supervision. Different from most prior work that focuses on a particular modality, comprehensive empirical evidence on 11 natural language understanding and cross-modal tasks illustrates that CAPT is applicable for both language and vision-language tasks, and obtains surprisingly consistent improvement, including 0.6% absolute gain on GLUE benchmarks and 0.8% absolute increment on $text{NLVR}^2$.
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f or data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
101 - Fei Mi , Wanhao Zhou , Fengyu Cai 2021
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis ing results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا