ﻻ يوجد ملخص باللغة العربية
ELECTRA pretrains a discriminator to detect replaced tokens, where the replacements are sampled from a generator trained with masked language modeling. Despite the compelling performance, ELECTRA suffers from the following two issues. First, there is no direct feedback loop from discriminator to generator, which renders replacement sampling inefficient. Second, the generators prediction tends to be over-confident along with training, making replacements biased to correct tokens. In this paper, we propose two methods to improve replacement sampling for ELECTRA pre-training. Specifically, we augment sampling with a hardness prediction mechanism, so that the generator can encourage the discriminator to learn what it has not acquired. We also prove that efficient sampling reduces the training variance of the discriminator. Moreover, we propose to use a focal loss for the generator in order to relieve oversampling of correct tokens as replacements. Experimental results show that our method improves ELECTRA pre-training on various downstream tasks.
In this paper, we introduce ELECTRA-style tasks to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrai
Pre-trained text encoders such as BERT and its variants have recently achieved state-of-the-art performances on many NLP tasks. While being effective, these pre-training methods typically demand massive computation resources. To accelerate pre-traini
Pre-trained self-supervised models such as BERT have achieved striking success in learning sequence representations, especially for natural language processing. These models typically corrupt the given sequences with certain types of noise, such as m
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis