ترغب بنشر مسار تعليمي؟ اضغط هنا

A Picture May Be Worth a Hundred Words for Visual Question Answering

111   0   0.0 ( 0 )
 نشر من قبل Yusuke Hirota
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How far can we go with textual representations for understanding pictures? In image understanding, it is essential to use concise but detailed image representations. Deep visual features extracted by vision models, such as Faster R-CNN, are prevailing used in multiple tasks, and especially in visual question answering (VQA). However, conventional deep visual features may struggle to convey all the details in an image as we humans do. Meanwhile, with recent language models progress, descriptive text may be an alternative to this problem. This paper delves into the effectiveness of textual representations for image understanding in the specific context of VQA. We propose to take description-question pairs as input, instead of deep visual features, and fed them into a language-only Transformer model, simplifying the process and the computational cost. We also experiment with data augmentation techniques to increase the diversity in the training set and avoid learning statistical bias. Extensive evaluations have shown that textual representations require only about a hundred words to compete with deep visual features on both VQA 2.0 and VQA-CP v2.



قيم البحث

اقرأ أيضاً

111 - Xuehai He , Zhuo Cai , Wenlan Wei 2020
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology (ABP)? To build such a system, three challenges need to be addressed. First, we need to create a visual question answering (VQA) da taset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Due to privacy concerns, pathology images are usually not publicly available. Besides, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. The second challenge is: since it is difficult to hire highly experienced pathologists to create pathology visual questions and answers, the resulting pathology VQA dataset may contain errors. Training pathology VQA models using these noisy or even erroneous data will lead to problematic models that cannot generalize well on unseen images. The third challenge is: the medical concepts and knowledge covered in pathology question-answer (QA) pairs are very diverse while the number of QA pairs available for modeling training is limited. How to learn effective representations of diverse medical concepts based on limited data is technically demanding. In this paper, we aim to address these three challenges. To our best knowledge, our work represents the first one addressing the pathology VQA problem. To deal with the issue that a publicly available pathology VQA dataset is lacking, we create PathVQA dataset. To address the second challenge, we propose a learning-by-ignoring approach. To address the third challenge, we propose to use cross-modal self-supervised learning. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed learning-by-ignoring method and cross-modal self-supervised learning methods.
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .
Answering questions related to art pieces (paintings) is a difficult task, as it implies the understanding of not only the visual information that is shown in the picture, but also the contextual knowledge that is acquired through the study of the hi story of art. In this work, we introduce our first attempt towards building a new dataset, coined AQUA (Art QUestion Answering). The question-answer (QA) pairs are automatically generated using state-of-the-art question generation methods based on paintings and comments provided in an existing art understanding dataset. The QA pairs are cleansed by crowdsourcing workers with respect to their grammatical correctness, answerability, and answers correctness. Our dataset inherently consists of visual (painting-based) and knowledge (comment-based) questions. We also present a two-branch model as baseline, where the visual and knowledge questions are handled independently. We extensively compare our baseline model against the state-of-the-art models for question answering, and we provide a comprehensive study about the challenges and potential future directions for visual question answering on art.
106 - Yanze Wu , Qiang Sun , Jianqi Ma 2019
This paper studies the task of Visual Question Answering (VQA), which is topical in Multimedia community recently. Particularly, we explore two critical research problems existed in VQA: (1) efficiently fusing the visual and textual modalities; (2) e nabling the visual reasoning ability of VQA models in answering complex questions. To address these challenging problems, a novel Question Guided Modular Routing Networks (QGMRN) has been proposed in this paper. Particularly, The QGMRN is composed of visual, textual and routing network. The visual and textual network serve as the backbones for the generic feature extractors of visual and textual modalities. QGMRN can fuse the visual and textual modalities at multiple semantic levels. Typically, the visual reasoning is facilitated by the routing network in a discrete and stochastic way by using Gumbel-Softmax trick for module selection. When the input reaches a certain modular layer, routing network newly proposed in this paper, dynamically selects a portion of modules from that layer to process the input depending on the question features generated by the textual network. It can also learn to reason by routing between the generic modules without additional supervision information or expert knowledge. Benefiting from the dynamic routing mechanism, QGMRN can outperform the previous classical VQA methods by a large margin and achieve the competitive results against the state-of-the-art methods. Furthermore, attention mechanism is integrated into our QGMRN model and thus can further boost the model performance. Empirically, extensive experiments on the CLEVR and CLEVR-Humans datasets validate the effectiveness of our proposed model, and the state-of-the-art performance has been achieved.
Performance on the most commonly used Visual Question Answering dataset (VQA v2) is starting to approach human accuracy. However, in interacting with state-of-the-art VQA models, it is clear that the problem is far from being solved. In order to stre ss test VQA models, we benchmark them against human-adversarial examples. Human subjects interact with a state-of-the-art VQA model, and for each image in the dataset, attempt to find a question where the models predicted answer is incorrect. We find that a wide range of state-of-the-art models perform poorly when evaluated on these examples. We conduct an extensive analysis of the collected adversarial examples and provide guidance on future research directions. We hope that this Adversarial VQA (AdVQA) benchmark can help drive progress in the field and advance the state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا