ترغب بنشر مسار تعليمي؟ اضغط هنا

On essential self-adjointness of singular Sturm-Liouville operators

106   0   0.0 ( 0 )
 نشر من قبل Fritz Gesztesy
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering singular Sturm--Liouville differential expressions of the type [ tau_{alpha} = -(d/dx)x^{alpha}(d/dx) + q(x), quad x in (0,b), ; alpha in mathbb{R}, ] we employ some Sturm comparison-type results in the spirit of Kurss to derive criteria for $tau_{alpha}$ to be in the limit point and limit circle case at $x=0$. More precisely, if $alpha in mathbb{R}$ and for $0 < x$ sufficiently small, [ q(x) geq [(3/4)-(alpha/2)]x^{alpha-2}, ] or, if $alphain (-infty,2)$ and there exist $Ninmathbb{N}$, and $varepsilon>0$ such that for $0<x$ sufficiently small, begin{align*} &q(x)geq[(3/4)-(alpha/2)]x^{alpha-2} - (1/2) (2 - alpha) x^{alpha-2} sum_{j=1}^{N}prod_{ell=1}^{j}[ln_{ell}(x)]^{-1} &quadquadquad +[(3/4)+varepsilon] x^{alpha-2}[ln_{1}(x)]^{-2}. end{align*} then $tau_{alpha}$ is nonoscillatory and in the limit point case at $x=0$. Here iterated logarithms for $0 < x$ sufficiently small are of the form, [ ln_1(x) = |ln(x)| = ln(1/x), quad ln_{j+1}(x) = ln(ln_j(x)), quad j in mathbb{N}. ] Analogous results are derived for $tau_{alpha}$ to be in the limit circle case at $x=0$. We also discuss a multi-dimensional application to partial differential expressions of the type [ - Div |x|^{alpha} abla + q(|x|), quad alpha in mathbb{R}, ; x in B_n(0;R) backslash{0}, ] with $B_n(0;R)$ the open ball in $mathbb{R}^n$, $nin mathbb{N}$, $n geq 2$, centered at $x=0$ of radius $R in (0, infty)$.



قيم البحث

اقرأ أيضاً

We extend the classical boundary values begin{align*} & g(a) = - W(u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x)}{hat u_{a}(lambda_0,x)}, &g^{[1]}(a) = (p g)(a) = W(hat u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x) - g(a) hat u _{a}(lambda_0,x)}{u_{a}(lambda_0,x)} end{align*} for regular Sturm-Liouville operators associated with differential expressions of the type $tau = r(x)^{-1}[-(d/dx)p(x)(d/dx) + q(x)]$ for a.e. $xin[a,b] subset mathbb{R}$, to the case where $tau$ is singular on $(a,b) subseteq mathbb{R}$ and the associated minimal operator $T_{min}$ is bounded from below. Here $u_a(lambda_0, cdot)$ and $hat u_a(lambda_0, cdot)$ denote suitably normalized principal and nonprincipal solutions of $tau u = lambda_0 u$ for appropriate $lambda_0 in mathbb{R}$, respectively. We briefly discuss the singular Weyl-Titchmarsh-Kodaira $m$-function and finally illustrate the theory in some detail with the examples of the Bessel, Legendre, and Kummer (resp., Laguerre) operators.
We discuss connections between the essential self-adjointness of a symmetric operator and the constancy of functions which are in the kernel of the adjoint of the operator. We then illustrate this relationship in the case of Laplacians on both manifo lds and graphs. Furthermore, we discuss the Greens function and when it gives a non-constant harmonic function which is square integrable.
Let $dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $mathcal{H}$ with equal deficiency indices and denote by $mathcal{N}_i = ker big(big(dot Abig)^* - i I_{mathcal{H}}big)$, $dim , (mathcal{N}_i)=kin m athbb{N} cup {infty}$, the associated deficiency subspace of $dot A$ . If $A$ denotes a self-adjoint extension of $dot A$ in $mathcal{H}$, the Donoghue $m$-operator $M_{A,mathcal{N}_i}^{Do} (, cdot ,)$ in $mathcal{N}_i$ associated with the pair $(A,mathcal{N}_i)$ is given by [ M_{A,mathcal{N}_i}^{Do}(z)=zI_{mathcal{N}_i} + (z^2+1) P_{mathcal{N}_i} (A - z I_{mathcal{H}})^{-1} P_{mathcal{N}_i} bigvert_{mathcal{N}_i},, quad zin mathbb{C} backslash mathbb{R}, ] with $I_{mathcal{N}_i}$ the identity operator in $mathcal{N}_i$, and $P_{mathcal{N}_i}$ the orthogonal projection in $mathcal{H}$ onto $mathcal{N}_i$. Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all self-adjoint realizations corresponding to the differential expression [ tau=frac{1}{r(x)}left[-frac{d}{dx}p(x)frac{d}{dx} + q(x)right] , text{ for a.e. $xin(a,b) subseteq mathbb{R}$,} ] in $L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue $m$-functions (resp., $2 times 2$ matrices) in all cases where $tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.
156 - A. A. Vladimirov 2012
Sturm-Liouville spectral problem for equation $-(y/r)+qy=lambda py$ with generalized functions $rge 0$, $q$ and $p$ is considered. It is shown that the problem may be reduced to analogous problem with $requiv 1$. The case of $q=0$ and self-similar $r$ and $p$ is considered as an example.
On the basis of the theory of Sturm--Liouville problem with distribution coefficients we get the infima and suprema of the first eigenvalue of the problem $-y + (q-lambda) y=0, y(0) -k_0^2 y(0) = y(1) + k_1^2 y(1) = 0$, where $q$ belongs to the set o f constant-sign summable functions on $[0,1]$ such that $int_0^1 q dx=pm 1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا