ﻻ يوجد ملخص باللغة العربية
We characterise the selection cuts and clustering properties of a magnitude-limited sample of bright galaxies that is part of the Bright Galaxy Survey (BGS) of the Dark Energy Spectroscopic Instrument (DESI) using the ninth data release of the Legacy Imaging Surveys (DR9). We describe changes in the DR9 selection compared to the DR8 one as explored in Ruiz-Macias et al. (2021). We also compare the DR9 selection in three distinct regions: BASS/MzLS in the north Galactic Cap (NGC), DECaLS in the NGC, and DECaLS in the south Galactic Cap (SGC). We investigate the systematics associated with the selection and assess its completeness by matching the BGS targets with the Galaxy and Mass Assembly (GAMA) survey. We measure the angular clustering for the overall bright sample (r $leq$ 19.5) and as function of apparent magnitude and colour. This enables to determine the clustering strength and slope by fitting a power-law model that can be used to generate accurate mock catalogues for this tracer. We use a counts-in-cells technique to explore higher-order statistics and cross-correlations with external spectroscopic data sets in order to check the evolution of the clustering with redshift and the redshift distribution of the BGS targets using clustering-redshifts. While this work validates the properties of the BGS bright targets, the final target selection pipeline and clustering properties of the entire DESI BGS will be fully characterised and validated with the spectroscopic data of Survey Validation.
The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next five years. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as we
The Dark Energy Spectroscopic Instrument (DESI) will execute a nearly magnitude-limited survey of low redshift galaxies ($0.05 leq z leq 0.4$, median $z approx 0.2$). Clustering analyses of this Bright Galaxy Survey (BGS) will yield the most precise
In a recent study, we developed a method to model the impact of photometric redshift uncertainty on the two-point correlation function (2PCF). In this method, we can obtain both the intrinsic clustering strength and the photometric redshift errors si
The DESI Legacy Imaging Surveys are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image approximately 14,000 deg^2 of the extragala
We extend the halo-based group finder developed by Yang et al. (2005b) to use data {it simultaneously} with either photometric or spectroscopic redshifts. A mock galaxy redshift surveys constructed from a high-resolution N-body simulation is used to