ترغب بنشر مسار تعليمي؟ اضغط هنا

The Deeper, Wider, Faster Program: Exploring stellar flare activity with deep, fast cadenced DECam imaging via machine learning

85   0   0.0 ( 0 )
 نشر من قبل Sara Webb
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our 500 pc distance-limited study of stellar fares using the Dark Energy Camera as part of the Deeper, Wider, Faster Program. The data was collected via continuous 20-second cadence g band imaging and we identify 19,914 sources with precise distances from Gaia DR2 within twelve, ~3 square-degree, fields over a range of Galactic latitudes. An average of ~74 minutes is spent on each field per visit. All light curves were accessed through a novel unsupervised machine learning technique designed for anomaly detection. We identify 96 flare events occurring across 80 stars, the majority of which are M dwarfs. Integrated are energies range from $sim 10^{31}-10^{37}$ erg, with a proportional relationship existing between increased are energy with increased distance from the Galactic plane, representative of stellar age leading to declining yet more energetic are events. In agreement with previous studies we observe an increase in flaring fraction from M0 -> M6 spectral types. Furthermore, we find a decrease in the flaring fraction of stars as vertical distance from the galactic plane is increased, with a steep decline present around ~100 pc. We find that ~70% of identified flares occur on short timescales of ~8 minutes. Finally we present our associated are rates, finding a volumetric rate of $2.9 pm 0.3 times 10^{-6}$ flares pc$^{-3}$ hr$^{-1}$.



قيم البحث

اقرأ أيضاً

Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number of wide-field surveys and the volume of data produced exceeding astronomers ability for manual evaluation, outlier and anom aly detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering technique and the Astronomaly package. As proof of concept, we evaluate 85553 minute-cadenced light curves collected over two 1.5 hour periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of Astronomaly, we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across a range of catalogues from within the fields, and find a further 7 uncatalogued variables and two stellar flare events, including a rarely observed ultra fast flare (5 minute) from a likely M-dwarf.
We present the Deeper Wider Faster (DWF) program that coordinates more than 30 multi-wavelength and multi-messenger facilities worldwide and in space to detect and study fast transients (millisecond-to-hours duration). DWF has four main components, ( 1) simultaneous observations, where about 10 major facilities, from radio to gamma-ray, are coordinated to perform deep, wide-field, fast-cadenced observations of the same field at the same time. Radio telescopes search for fast radio bursts while optical imagers and high-energy instruments search for seconds-to-hours timescale transient events, (2) real-time (seconds to minutes) supercomputer data processing and candidate identification, along with real-time (minutes) human inspection of candidates using sophisticated visualisation technology, (3) rapid-response (minutes) follow-up spectroscopy and imaging and conventional ToO observations, and (4) long-term follow up with a global network of 1-4m-class telescopes. The principal goals of DWF are to discover and study counterparts to fast radio bursts and gravitational wave events, along with millisecond-to-hour duration transients at all wavelengths.
123 - Fuzhao Xue , Ziji Shi , Futao Wei 2021
More transformer blocks with residual connections have recently achieved impressive results on various tasks. To achieve better performance with fewer trainable parameters, recent methods are proposed to go shallower by parameter sharing or model com pressing along with the depth. However, weak modeling capacity limits their performance. Contrastively, going wider by inducing more trainable matrixes and parameters would produce a huge model requiring advanced parallelism to train and inference. In this paper, we propose a parameter-efficient framework, going wider instead of deeper. Specially, following existing works, we adapt parameter sharing to compress along depth. But, such deployment would limit the performance. To maximize modeling capacity, we scale along model width by replacing feed-forward network (FFN) with mixture-of-experts (MoE). Across transformer blocks, instead of sharing normalization layers, we propose to use individual layernorms to transform various semantic representations in a more parameter-efficient way. To evaluate our plug-and-run framework, we design WideNet and conduct comprehensive experiments on popular computer vision and natural language processing benchmarks. On ImageNet-1K, our best model outperforms Vision Transformer (ViT) by $1.5%$ with $0.72 times$ trainable parameters. Using $0.46 times$ and $0.13 times$ parameters, our WideNet can still surpass ViT and ViT-MoE by $0.8%$ and $2.1%$, respectively. On four natural language processing datasets, WideNet outperforms ALBERT by $1.8%$ on average and surpass BERT using factorized embedding parameterization by $0.8%$ with fewer parameters.
The perplexing mystery of what maintains the solar coronal temperature at about a million K, while the visible disc of the Sun is only at 5800 K, has been a long standing problem in solar physics. A recent study by Mondal(2020) has provided the first evidence for the presence of numerous ubiquitous impulsive emissions at low radio frequencies from the quiet sun regions, which could hold the key to solving this mystery. These features occur at rates of about five hundred events per minute, and their strength is only a few percent of the background steady emission. One of the next steps for exploring the feasibility of this resolution to the coronal heating problem is to understand the morphology of these emissions. To meet this objective we have developed a technique based on an unsupervised machine learning approach for characterising the morphology of these impulsive emissions. Here we present the results of application of this technique to over 8000 images spanning 70 minutes of data in which about 34,500 features could robustly be characterised as 2D elliptical Gaussians.
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique in biomedical research that uses the fluorophore decay rate to provide additional contrast in fluorescence microscopy. However, at present, the calculation, analysis, and interpr etation of FLIM is a complex, slow, and computationally expensive process. Machine learning (ML) techniques are well suited to extract and interpret measurements from multi-dimensional FLIM data sets with substantial improvement in speed over conventional methods. In this topical review, we first discuss the basics of FILM and ML. Second, we provide a summary of lifetime extraction strategies using ML and its applications in classifying and segmenting FILM images with higher accuracy compared to conventional methods. Finally, we discuss two potential directions to improve FLIM with ML with proof of concept demonstrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا