ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensing applied pressure by triggering electronic quantum many-body excitations in an optical waveguide

64   0   0.0 ( 0 )
 نشر من قبل Federica De Chiara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, nanomaterials are arousing increasing interest and a wide variety of opto-electronic devices have been developed, such as light-emitting diodes, solar cells, and photodetectors. However, the study of the light emission properties of quantum dots under pressure is still limited. By using a joint theoretical and experimental approach, we developed a polymer waveguide doped with CdSe quantum dots for pressure sensing. Absorption and re-emission effects of the quantum dots are affected by the pressure applied on the waveguide. Specifically, since both amplitude and wavelength are modulated, not only the pressure can be detected, but also its location along the waveguide. The calibration results demonstrate the feasibility of the proposed force sensor design. Theoretical model and simulations further validate the presented sensing principle. The proposed prototype benefits from the main advantages of optical sensors, such as their predisposition to miniaturization, small cable sizes and weights, immunity to electromagnetic interference, and safe operation in hazard environments. In addition, bio-compatibility, non-toxicity and flexibility make the presented sensor potentially appealing to various application fields such as nanobiotechnology and robotic sensing.



قيم البحث

اقرأ أيضاً

Luminescent colloidal CdSe nanorings are a new type of semiconductor structure that have attracted interest due to the potential for unique physics arising from their non-trivial toroidal shape. However, the exciton properties and dynamics of these m aterials with complex topology are not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and single particle measurements to study these materials. We find that on transformation of CdSe nanoplatelets to nanorings, by perforating the center of platelets, the emission lifetime decreases and the emission spectrum broadens due to ensemble variations in the ring size and thickness. The reduced PL quantum yield of nanorings (~10%) compared to platelets (~30%) is attributed to an enhanced coupling between: (i) excitons and CdSe LO-phonons at 200 cm-1 and (ii) negatively charged selenium-rich traps which give nanorings a high surface charge (~-50 mV). Population of these weakly emissive trap sites dominates the emission properties with an increased trap emission at low temperatures relative to excitonic emission. Our results provide a detailed picture of the nature of excitons in nanorings and the influence of phonons and surface charge in explaining the broad shape of the PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that the excitonic properties of nanorings are not solely a consequence of the toroidal shape but are also a result of traps introduced by puncturing the platelet center.
As strength of disorder enhances beyond a threshold value in many-body systems, a fundamental transformation happens through which the entire spectrum localizes, a phenomenon known as many-body localization. This has profound implications as it break s down fundamental principles of statistical mechanics, such as thermalization and ergodicity. Due to the complexity of the problem, the investigation of the many-body localization transition has remained a big challenge. The experimental exploration of the transition point is even more challenging as most of the proposed quantities for studying such effect are practically infeasible. Here, we experimentally implement a scalable protocol for detecting the many-body localization transition point, using the dynamics of a $N=12$ superconducting qubit array. We show that the sensitivity of the dynamics to random samples becomes maximum at the transition point which leaves its fingerprints in all spatial scales. By exploiting three quantities, each with different spatial resolution, we identify the transition point with excellent match between simulation and experiment. In addition, one can detect the evidence of mobility edge through slight variation of the transition point as the initial state varies. The protocol is easily scalable and can be performed across various physical platforms.
The key to explaining a wide range of quantum phenomena is understanding how entanglement propagates around many-body systems. Furthermore, the controlled distribution of entanglement is of fundamental importance for quantum communication and computa tion. In many situations, quasiparticles are the carriers of information around a quantum system and are expected to distribute entanglement in a fashion determined by the system interactions. Here we report on the observation of magnon quasiparticle dynamics in a one-dimensional many-body quantum system of trapped ions representing an Ising spin model. Using the ability to tune the effective interaction range, and to prepare and measure the quantum state at the individual particle level, we observe new quasiparticle phenomena. For the first time, we reveal the entanglement distributed by quasiparticles around a many-body system. Second, for long-range interactions we observe the divergence of quasiparticle velocity and breakdown of the light-cone picture that is valid for short-range interactions. Our results will allow experimental studies of a wide range of phenomena, such as quantum transport, thermalisation, localisation and entanglement growth, and represent a first step towards a new quantum-optical regime with on-demand quasiparticles with tunable non-linear interactions.
Quantum batteries are quantum mechanical systems with many degrees of freedom which can be used to store energy and that display fast charging. The physics behind fast charging is still unclear. Is this just due to the collective behavior of the unde rlying interacting many-body system or does it have its roots in the quantum mechanical nature of the system itself? In this work we address these questions by studying three examples of quantum-mechanical many-body batteries with rigorous classical analogs. We find that the answer is model dependent and, even within the same model, depends on the value of the coupling constant that controls the interaction between the charger and the battery itself.
We demonstrate the effectiveness of quantum optimal control techniques in harnessing irreversibility generated by non-equilibrium processes, implemented in unitarily evolving quantum many-body systems. We address the dynamics of a finite-size quantum Ising model subjected to finite-time transformations, which unavoidably generate irreversibility. We show that work can be generated through such transformation by means of optimal controlled quenches, while quenching the degree of irreversibility to very low values, thus boosting the efficiency of the process and paving the way to a fully controllable non-equilibrium thermodynamics of quantum processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا