ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Self-Identified Counseling Expertise in Online Support Forums

343   0   0.0 ( 0 )
 نشر من قبل Allison Lahnala
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A growing number of people engage in online health forums, making it important to understand the quality of the advice they receive. In this paper, we explore the role of expertise in responses provided to help-seeking posts regarding mental health. We study the differences between (1) interactions with peers; and (2) interactions with self-identified mental health professionals. First, we show that a classifier can distinguish between these two groups, indicating that their language use does in fact differ. To understand this difference, we perform several analyses addressing engagement aspects, including whether their comments engage the support-seeker further as well as linguistic aspects, such as dominant language and linguistic style matching. Our work contributes toward the developing efforts of understanding how health experts engage with health information- and support-seekers in social networks. More broadly, it is a step toward a deeper understanding of the styles of interactions that cultivate supportive engagement in online communities.



قيم البحث

اقرأ أيضاً

Matching question-answer relations between two turns in conversations is not only the first step in analyzing dialogue structures, but also valuable for training dialogue systems. This paper presents a QA matching model considering both distance info rmation and dialogue history by two simultaneous attention mechanisms called mutual attention. Given scores computed by the trained model between each non-question turn with its candidate questions, a greedy matching strategy is used for final predictions. Because existing dialogue datasets such as the Ubuntu dataset are not suitable for the QA matching task, we further create a dataset with 1,000 labeled dialogues and demonstrate that our proposed model outperforms the state-of-the-art and other strong baselines, particularly for matching long-distance QA pairs.
We describe a novel method for efficiently eliciting scalar annotations for dataset construction and system quality estimation by human judgments. We contrast direct assessment (annotators assign scores to items directly), online pairwise ranking agg regation (scores derive from annotator comparison of items), and a hybrid approach (EASL: Efficient Annotation of Scalar Labels) proposed here. Our proposal leads to increased correlation with ground truth, at far greater annotator efficiency, suggesting this strategy as an improved mechanism for dataset creation and manual system evaluation.
Online debate forums provide users a platform to express their opinions on controversial topics while being exposed to opinions from diverse set of viewpoints. Existing work in Natural Language Processing (NLP) has shown that linguistic features extr acted from the debate text and features encoding the characteristics of the audience are both critical in persuasion studies. In this paper, we aim to further investigate the role of discourse structure of the arguments from online debates in their persuasiveness. In particular, we use the factor graph model to obtain features for the argument structure of debates from an online debating platform and incorporate these features to an LSTM-based model to predict the debater that makes the most convincing arguments. We find that incorporating argument structure features play an essential role in achieving the better predictive performance in assessing the persuasiveness of the arguments in online debates.
Online peer-to-peer support platforms enable conversations between millions of people who seek and provide mental health support. If successful, web-based mental health conversations could improve access to treatment and reduce the global disease bur den. Psychologists have repeatedly demonstrated that empathy, the ability to understand and feel the emotions and experiences of others, is a key component leading to positive outcomes in supportive conversations. However, recent studies have shown that highly empathic conversations are rare in online mental health platforms. In this paper, we work towards improving empathy in online mental health support conversations. We introduce a new task of empathic rewriting which aims to transform low-empathy conversational posts to higher empathy. Learning such transformations is challenging and requires a deep understanding of empathy while maintaining conversation quality through text fluency and specificity to the conversational context. Here we propose PARTNER, a deep reinforcement learning agent that learns to make sentence-level edits to posts in order to increase the expressed level of empathy while maintaining conversation quality. Our RL agent leverages a policy network, based on a transformer language model adapted from GPT-2, which performs the dual task of generating candidate empathic sentences and adding those sentences at appropriate positions. During training, we reward transformations that increase empathy in posts while maintaining text fluency, context specificity and diversity. Through a combination of automatic and human evaluation, we demonstrate that PARTNER successfully generates more empathic, specific, and diverse responses and outperforms NLP methods from related tasks like style transfer and empathic dialogue generation. Our work has direct implications for facilitating empathic conversations on web-based platforms.
In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا