ترغب بنشر مسار تعليمي؟ اضغط هنا

Projection of strong coupling interaction with thermal bath in a polymer

87   0   0.0 ( 0 )
 نشر من قبل Takuya Saito
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takuya Saito




اسأل ChatGPT حول البحث

We investigate modifications of a stochastic polymer picture through a shift in the boundary between the system and an external environment. A conventional bead-and-spring model serving as the coarse-graining model is given by the Langevin equation for all the monomers subject to white noise. However, stochastic motion for only a tagged monomer is observed to occur in the presence of colored noise. The qualitative change in the observations arises from the boundary shift decided by the observer. The Langevin dynamics analyses interpret the colored noise as the emergence of the polymeric elastic force, resulting in additional heat in the tagged monomer observation. Being distinguished from coarse-graining based on scale separation, the projection of comparable internal degrees of freedom is also discussed in light of the fluctuation theorem and the stochastic polymer thermodynamics.

قيم البحث

اقرأ أيضاً

78 - A. Gnoli , A. Petri , F. Dalton 2012
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetri c wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.
Structural changes in giant DNA induced by the addition of the flexible polymer PEG were examined by the method of single-DNA observation. In dilute DNA conditions, individual DNA assumes a compact state via a discrete coil-globule transition, wherea s in concentrated solution, DNA molecules exhibit an extended conformation via macroscopic phase segregation. The long axis length of the stretched state in DNA is about 1000 times larger than that of the compact state. Phase segregation at high DNA concentrations occurs at lower PEG concentrations than the compaction at low DNA concentrations. These opposite changes in the conformation of DNA molecule are interpreted in terms of the free energy, including depletion interaction.
Glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of glass transition temperature (Tg) as the thickness of the polymer film reduces below the radius of gyration but the change in the average Tg was found to be very small. Existence of reversible negative and positive thermal expansion below and above Tg increased the sensitivity of our thickness measurements performed using energy dispersive x-ray reflectivity. A simple model of Tg variation as a function of depth expected from sliding motion could explain the results. We observe clear glass transition even for 4 nm polystyrene film that was predicted to be absent from ellipsometry measurements of thicker films.
We investigate the dynamics of nanoparticles in semidilute polymer solutions when the nanoparticles are comparably sized to the polymer coils using explicit- and implicit-solvent simulation methods. The nanoparticle dynamics are subdiffusive on short time scales before transitioning to diffusive motion on long time scales. The long-time diffusivities scale according to theoretical predictions based on full dynamic coupling to the polymer segmental relaxations. In agreement with our recent experiments, however, we observe that the nanoparticle subdiffusive exponents are significantly larger than predicted by the coupling theory over a broad range of polymer concentrations. We attribute this discrepancy in the subdiffusive regime to the presence of an additional coupling mechanism between the nanoparticle dynamics and the polymer center-of-mass motion, which differs from the polymer relaxations that control the long-time diffusion. This coupling is retained even in the absence of many-body hydrodynamic interactions when the long-time dynamics of the colloids and polymers are matched.
The topological effects on the thermal properties of several knot configurations are investigated using Monte Carlo simulations. In order to check if the topology of the knots is preserved during the thermal fluctuations we propose a method that allo ws very fast calculations and can be easily applied to arbitrarily complex knots. As an application, the specific energy and heat capacity of the trefoil, the figure-eight and the $8_1$ knots are calculated at different temperatures and for different lengths. Short-range repulsive interactions between the monomers are assumed. The knots configurations are generated on a three-dimensional cubic lattice and sampled by means of the Wang-Landau algorithm and of the pivot method. The obtained results show that the topological effects play a key role for short-length polymers. Three temperature regimes of the growth rate of the internal energy of the system are distinguished.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا