ترغب بنشر مسار تعليمي؟ اضغط هنا

Retrospective Interference Regeneration Schemes for Relay-Aided K-user MIMO Downlink Networks

171   0   0.0 ( 0 )
 نشر من قبل Weiheng Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jingfu Li




اسأل ChatGPT حول البحث

To accommodate the explosive growth of the Internet-of-Things (IoT), incorporating interference alignment (IA) into existing multiple access (MA) schemes is under investigation. However, when it is applied in MIMO networks to improve the system compacity, the incoming problem regarding information delay arises which does not meet the requirement of low-latency. Therefore, in this paper, we first propose a new metric, degree of delay (DoD), to quantify the issue of information delay, and characterize DoD for three typical transmission schemes, i.e., TDMA, beamforming based TDMA (BD-TDMA), and retrospective interference alignment (RIA). By analyzing DoD in these schemes, its value mainly depends on three factors, i.e., delay sensitive factor, size of data set, and queueing delay slot. The first two reflect the relationship between quality of service (QoS) and information delay sensitivity, and normalize time cost for each symbol, respectively. These two factors are independent of the transmission schemes, and thus we aim to reduce the queueing delay slot to improve DoD. Herein, three novel joint IA schemes are proposed for MIMO downlink networks with different number of users. That is, hybrid antenna array based partial interference elimination and retrospective interference regeneration scheme (HAA-PIE-RIR), HAA based improved PIE and RIR scheme (HAA-IPIE-RIR), and HAA based cyclic interference elimination and RIR scheme (HAA-CIE-RIR). Based on the first scheme, the second scheme extends the application scenarios from $2$-user to $K$-user while causing heavy computational burden. The third scheme relieves such computational burden, though it has certain degree of freedom (DoF) loss due to insufficient utilization of space resources.



قيم البحث

اقرأ أيضاً

74 - Jingfu Li 2021
It is known that interference alignment (IA) plays an important role in improving the degree of freedom (DoF) of multi-input and multi-output (MIMO) systems. However, most of the traditional IA schemes suffer from the high computational complexity an d require the global and instantaneous channel state information (CSI), both of which make them difficult to be extended to cellular MIMO systems. To handle these issues, two new interference alignment schemes, i.e., the retrospective interference regeneration (RIR) scheme and the beamforming based distributed retrospective interference alignment (B-DRIA) scheme, are proposed for cellular K-user MIMO downlink networks. For the RIR scheme, it adopts interference elimination algorithm to erase redundant symbols in inter-cell interference (ICI) signals, and then uses interference regeneration algorithm to avoid secondary interference. The RIR scheme obtains greater DoF gain than the retrospective interference alignment (RIA) scheme, but incurs performance degradation when the transceiver antennas ratio (TAR) approaches 1. Therefore, the B-DRIA scheme is further proposed. For the B-DRIA scheme, the cellular beamforming matrix is introduced to eliminate the ICI, and meanwhile distributed retrospective interference alignment algorithm is adopted to align inter-user interference (IUI). The simulation results show that the B-DRIA scheme obtains larger DoF than the RIR scheme locally. Specifically, when TAR approaches 1, two schemes obtain the same DoF. While TAR approaches 2, the DoF of the B-DRIA scheme is superior than the RIR scheme.
Flexible numerologies are being considered as part of designs for 5G systems to support vertical services with diverse requirements such as enhanced mobile broadband, ultra-reliable low-latency communications, and massive machine type communication. Different vertical services can be multiplexed in either frequency domain, time domain, or both. In this paper, we investigate the use of spatial multiplexing of services using MU-MIMO where the numerologies for different users may be different. The users are grouped according to the chosen numerology and a separate pre-coder and FFT size is used per numerology at the transmitter. The pre-coded signals for the multiple numerologies are added in the time domain before transmission. We analyze the performance gains of this approach using capacity analysis and link level simulations using conjugate beamforming and signal-to-leakage noise ratio maximization techniques. We show that the MU interference between users with different numerologies can be suppressed efficiently with reasonable number of antennas at the base-station. This feature enables MU-MIMO techniques to be applied for 5G across different numerologies.
We derive closed-form expressions for the achievable rates of a buffer-aided full-duplex (FD) multiple-input multiple-output (MIMO) Gaussian relay channel. The FD relay still suffers from residual self-interference (RSI) after the application of self -interference mitigation techniques. We investigate both cases of a slow-RSI channel where the RSI is fixed over the entire codeword, and a fast-RSI channel where the RSI changes from one symbol duration to another within the codeword. We show that the RSI can be completely eliminated in the slow-RSI case when the FD relay is equipped with a buffer while the fast RSI cannot be eliminated. For the fixed-rate data transmission scenario, we derive the optimal transmission strategy that should be adopted by the source node and relay node to maximize the system throughput. We verify our analytical findings through simulations.
103 - Chen Chen , Yong Niu , Shiwen Mao 2021
Rail transportation, especially, high-speed rails (HSR), is an important infrastructure for the development of national economy and the promotion of passenger experience. Due to the large bandwidth, millimeter wave (mmWave) communication is regarded as a promising technology to meet the demand of high data rates. However, since mmWave communication has the characteristic of high attenuation, mobile relay (MR) is considered in this paper. Also, full-duplex (FD) communications have been proposed to improve the spectral efficiency. However, because of the high speed, as well as the problem of penetration loss, passengers on the train have a poor quality of service. Consequently, an effective user association scheme for HSR in mmWave band is necessary. In this paper, we investigate the user association optimization problem in mmWave mobilerelay systems where the MRs operate in the FD mode. To maximize the system capacity, we propose a cooperative user association approach based on coalition formation game, and develop a coalition formation algorithm to solve the challenging NP-hard problem. We also prove the convergence and Nashstable property of the proposed algorithm. Extensive simulations are done to show the system performance of the proposed scheme under various network settings. It is demonstrated that the proposed distributed low complexity scheme achieves a nearoptimal performance and outperforms two baseline schemes in terms of average system throughput.
This paper introduces a novel approach of utilizing the reconfigurable intelligent surface (RIS) for joint data modulation and signal beamforming in a multi-user downlink cellular network by leveraging the idea of backscatter communication. We presen t a general framework in which the RIS, referred to as modulating intelligent surface (MIS) in this paper, is used to: i) beamform the signals for a set of users whose data modulation is already performed by the base station (BS), and at the same time, ii) embed the data of a different set of users by passively modulating the deliberately sent carrier signals from the BS to the RIS. To maximize each users spectral efficiency, a joint non-convex optimization problem is formulated under the sum minimum mean-square error (MMSE) criterion. Alternating optimization is used to divide the original joint problem into two tasks of: i) separately optimizing the MIS phase-shifts for passive beamforming along with data embedding for the BS- and MIS-served users, respectively, and ii) jointly optimizing the active precoder and the receive scaling factor for the BS- and MIS-served users, respectively. While the solution to the latter joint problem is found in closed-form using traditional optimization techniques, the optimal phase-shifts at the MIS are obtained by deriving the appropriate optimization-oriented vector approximate message passing (OOVAMP) algorithm. Moreover, the original joint problem is solved under both ideal and practical constraints on the MIS phase shifts, namely, the unimodular constraint and assuming each MIS element to be terminated by a variable reactive load. The proposed MIS-assisted scheme is compared against state-of-the-art RIS-assisted wireless communication schemes and simulation results reveal that it brings substantial improvements in terms of system throughput while supporting a much higher number of users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا