ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning-Aided OFDM-Based Generalized Optical Quadrature Spatial Modulation

444   0   0.0 ( 0 )
 نشر من قبل Chen Chen Dr.
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an orthogonal frequency division multiplexing (OFDM)-based generalized optical quadrature spatial modulation (GOQSM) technique for multiple-input multiple-output optical wireless communication (MIMO-OWC) systems. Considering the error propagation and noise amplification effects when applying maximum likelihood and maximum ratio combining (ML-MRC)-based detection, we further propose a deep neural network (DNN)-aided detection for OFDM-based GOQSM systems. The proposed DNN-aided detection scheme performs the GOQSM detection in a joint manner, which can efficiently eliminate the adverse effects of both error propagation and noise amplification. The obtained simulation results successfully verify the superiority of the deep learning-aided OFDM-based GOQSM technique for high-speed MIMO-OWC systems.



قيم البحث

اقرأ أيضاً

107 - Feng Shu , Lin Liu , Yumeng Zhang 2019
As a green and secure wireless transmission way, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation (APM) signal to carry messages, improve security, and save energy. In this paper, we reviewed its crucial techniques: transmit antenna selection (TAS), artificial noise (AN) projection, power allocation (PA), and joint detection at desired receiver. To achieve the optimal performance of maximum likelihood (ML) detector, a deep-neural-network (DNN) joint detector is proposed to jointly infer the index of transmit antenna and signal constellation point with a lower-complexity. Here, each layer of DNN is redesigned to optimize the joint inference performance of two distinct types of information: transmit antenna index and signal constellation point. Simulation results show that the proposed DNN method performs 3dB better than the conventional DNN structure and is close to ML detection in the low and medium signal-to-noise ratio regions in terms of the bit error rate (BER) performance, but its complexity is far lower-complexity compared to ML. Finally, three key techniques TAS, PA, and AN projection at transmitter can be combined to make SM a true secure modulation.
109 - Wenjing Yan , Xiaojun Yuan 2021
Reconfigurable intelligent surface (RIS) based reflection modulation has been considered as a promising information delivery mechanism, and has the potential to realize passive information transfer of a RIS without consuming any additional radio freq uency chain and time/frequency/energy resources. The existing on-off reflection modulation (ORM) schemes are based on manipulating the ``on/off states of RIS elements, which may lead to the degradation of RIS reflection efficiency. This paper proposes a frequency reflection modulation (FRM) method for RIS-aided OFDM systems. The FRM-OFDM scheme modulates the frequency of the incident electromagnetic waves, and the RIS information is embedded in the frequency-hoping states of RIS elements. Unlike the ORM-OFDM scheme, the FRM-OFDM scheme can achieve higher reflection efficiency, since the latter does not turn off any reflection element in reflection modulation. We propose a block coordinate descent (BCD) algorithm to maximize the user achievable rate for the FRM-OFDM system by jointly optimizing the phase shift of the RIS and the power allocation at the transmitter. Further, we design a bilinear message passing (BMP) algorithm for the bilinear recovery of both the user symbols and the RIS data. Numerical simulations have verified the efficiency of the designed BCD algorithm for system optimization and the BMP algorithm for signal detection, as well as the superiority of the proposed FRM-OFDM scheme over the ORM-OFDM scheme.
A novel dual-function radar communication (DFRC) system is proposed, that achieves high target resolution and high communication rate. It consists of a multiple-input multiple-output (MIMO) radar, where only a small number of antennas are active in e ach channel use. The probing waveforms are orthogonal frequency division multiplexing (OFDM) type. The OFDM carriers are divided into two groups, one that is used by the active antennas in a shared fashion, and another one, where each subcarrier is assigned to an active antenna in an exclusive fashion (private subcarriers). Target estimation is carried out based on the received and transmitted symbols. The system communicates information via the transmitted OFDM data symbols and the pattern of active antennas in a generalized spatial modulation (GSM) fashion. A multi-antenna communication receiver can identify the indices of active antennas via sparse signal recovery methods. The use of shared subcarriers enables high communication rate. The private subcarriers are used to synthesize a virtual array for high angular resolution, and also for improved estimation on the active antenna indices. The OFDM waveforms allow the communication receiver to easily mitigate the effect of frequency selective fading, while the use of a sparse array at the transmitter reduces the hardware cost of the system. The radar performance of the proposed DFRC system is evaluated via simulations, and bit error rate (BER) results for the communication system are provided.
Channel estimation and signal detection are very challenging for an orthogonal frequency division multiplexing (OFDM) system without cyclic prefix (CP). In this article, deep learning based on orthogonal approximate message passing (DL-OAMP) is used to address these problems. The DL-OAMP receiver includes a channel estimation neural network (CE-Net) and a signal detection neural network based on OAMP, called OAMP-Net. The CE-Net is initialized by the least square channel estimation algorithm and refined by minimum mean-squared error (MMSE) neural network. The OAMP-Net is established by unfolding the iterative OAMP algorithm and adding some trainable parameters to improve the detection performance. The DL-OAMP receiver is with low complexity and can estimate time-varying channels with only a single training. Simulation results demonstrate that the bit-error rate (BER) of the proposed scheme is lower than those of competitive algorithms for high-order modulation.
We consider a wireless communication system, where a transmitter sends signals to a receiver with different modulation types while the receiver classifies the modulation types of the received signals using its deep learning-based classifier. Concurre ntly, an adversary transmits adversarial perturbations using its multiple antennas to fool the classifier into misclassifying the received signals. From the adversarial machine learning perspective, we show how to utilize multiple antennas at the adversary to improve the adversarial (evasion) attack performance. Two main points are considered while exploiting the multiple antennas at the adversary, namely the power allocation among antennas and the utilization of channel diversity. First, we show that multiple independent adversaries, each with a single antenna cannot improve the attack performance compared to a single adversary with multiple antennas using the same total power. Then, we consider various ways to allocate power among multiple antennas at a single adversary such as allocating power to only one antenna, and proportional or inversely proportional to the channel gain. By utilizing channel diversity, we introduce an attack to transmit the adversarial perturbation through the channel with the largest channel gain at the symbol level. We show that this attack reduces the classifier accuracy significantly compared to other attacks under different channel conditions in terms of channel variance and channel correlation across antennas. Also, we show that the attack success improves significantly as the number of antennas increases at the adversary that can better utilize channel diversity to craft adversarial attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا