ترغب بنشر مسار تعليمي؟ اضغط هنا

Directions for 3D User Interface Research from Consumer VR Games

92   0   0.0 ( 0 )
 نشر من قبل Anthony Steed
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the continuing development of affordable immersive virtual reality (VR) systems, there is now a growing market for consumer content. The current form of consumer systems is not dissimilar to the lab-based VR systems of the past 30 years: the primary input mechanism is a head-tracked display and one or two tracked hands with buttons and joysticks on hand-held controllers. Over those 30 years, a very diverse academic literature has emerged that covers design and ergonomics of 3D user interfaces (3DUIs). However, the growing consumer market has engaged a very broad range of creatives that have built a very diverse set of designs. Sometimes these designs adopt findings from the academic literature, but other times they experiment with completely novel or counter-intuitive mechanisms. In this paper and its online adjunct, we report on novel 3DUI design patterns that are interesting from both design and research perspectives: they are highly novel, potentially broadly re-usable and/or suggest interesting avenues for evaluation. The supplemental material, which is a living document, is a crowd-sourced repository of interesting patterns. This paper is a curated snapshot of those patterns that were considered to be the most fruitful for further elaboration.



قيم البحث

اقرأ أيضاً

In recent years, there has been an increasing interest in the use of robotic technology at home. A number of service robots appeared on the market, supporting customers in the execution of everyday tasks. Roughly at the same time, consumer level robo ts started to be used also as toys or gaming companions. However, gaming possibilities provided by current off-the-shelf robotic products are generally quite limited, and this fact makes them quickly loose their attractiveness. A way that has been proven capable to boost robotic gaming and related devices consists in creating playful experiences in which physical and digital elements are combined together using Mixed Reality technologies. However, these games differ significantly from digital- or physical only experiences, and new design principles are required to support developers in their creative work. This papers addresses such need, by drafting a set of guidelines which summarize developments carried out by the research community and their findings.
Virtual reality (VR) is rapidly growing, with the potential to change the way we create and consume content. In VR, users integrate multimodal sensory information they receive, to create a unified perception of the virtual world. In this survey, we r eview the body of work addressing multimodality in VR, and its role and benefits in user experience, together with different applications that leverage multimodality in many disciplines. These works thus encompass several fields of research, and demonstrate that multimodality plays a fundamental role in VR; enhancing the experience, improving overall performance, and yielding unprecedented abilities in skill and knowledge transfer.
Virtual Reality (VR) enables users to collaborate while exploring scenarios not realizable in the physical world. We propose CollabVR, a distributed multi-user collaboration environment, to explore how digital content improves expression and understa nding of ideas among groups. To achieve this, we designed and examined three possible configurations for participants and shared manipulable objects. In configuration (1), participants stand side-by-side. In (2), participants are positioned across from each other, mirrored face-to-face. In (3), called eyes-free, participants stand side-by-side looking at a shared display, and draw upon a horizontal surface. We also explored a telepathy mode, in which participants could see from each others point of view. We implemented 3DSketch visual objects for participants to manipulate and move between virtual content boards in the environment. To evaluate the system, we conducted a study in which four people at a time used each of the three configurations to cooperate and communicate ideas with each other. We have provided experimental results and interview responses.
71 - Gregoire Cattan 2020
A brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology for enhancing virtual reality (VR) applications-in particular, for gaming. We focus on the so-called P300-BCI, a stable and accurate BCI paradigm relying on the recognition of a positive event-related potential (ERP) occurring in the EEG about 300 ms post-stimulation. We implemented a basic version of such a BCI displayed on an ordinary and affordable smartphone-based head-mounted VR device: that is, a mobile and passive VR system (with no electronic components beyond the smartphone). The mobile phone performed the stimuli presentation, EEG synchronization (tagging) and feedback display. We compared the ERPs and the accuracy of the BCI on the VR device with a traditional BCI running on a personal computer (PC). We also evaluated the impact of subjective factors on the accuracy. The study was within-subjects, with 21 participants and one session in each modality. No significant difference in BCI accuracy was found between the PC and VR systems, although the P200 ERP was significantly wider and larger in the VR system as compared to the PC system.
In this article we report a case study of a Language Learning Bauhaus VR hackathon with Goethe Institute. It was organized as an educational and research project to tap into the dynamics of transdisciplinary teams challenged with a specific requireme nt. In our case, it was to build a Bauhaus-themed German Language Learning VR App. We constructed this experiment to simulate how representatives of different disciplines may work together towards a very specific purpose under time pressure. So, each participating team consisted of members of various expert-fields: software development (Unity or Unreal), design, psychology and linguistics. The results of this study cast light on the recommended cycle of design thinking and customer-centered design in VR. Especially in interdisciplinary rapid prototyping conditions, where stakeholders initially do not share competences. They also showcase educational benefits of working in transdisciplinary environments. This study, combined with our previous work on human factors in rapid software development and co-design, including hackathon dynamics, allowed us to formulate recommendations for organizing content creation VR hackathons for specific purposes. We also provide guidelines on how to prepare the participants to work in rapid prototyping VR environments and benefit from such experiences in the long term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا