ترغب بنشر مسار تعليمي؟ اضغط هنا

Catalyzed Baryogenesis

56   0   0.0 ( 0 )
 نشر من قبل Yang Bai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel mechanism, catalyzed baryogenesis, is proposed to explain the observed baryon asymmetry in our universe. In this mechanism, the motion of a ball-like catalyst provides the necessary out-of-equilibrium condition, its outer wall has CP-violating interactions with the Standard Model particles, and its interior has baryon number violating interactions. We use the electroweak-symmetric ball model as an example of such a catalyst. In this model, electroweak sphalerons inside the ball are active and convert baryons into leptons. The observed baryon number asymmetry can be produced for a light ball mass and a large ball radius. Due to direct detection constraints on relic balls, we consider a scenario in which the balls evaporate, leading to dark radiation at testable levels.



قيم البحث

اقرأ أيضاً

We explore a simple model which naturally explains the observed baryon asymmetry of the Universe. In this model the strong coupling is promoted to a dynamical quantity, which evolves through the vacuum expectation value of a singlet scalar field that mixes with the Higgs field. In the resulting cosmic history, QCD confinement and electroweak symmetry breaking initially occur simultaneously close to the weak scale. The early confinement triggers the axion to roll toward its minimum, which creates a chemical potential between baryons and antibaryons through the interactions of the $eta$ meson, resulting in spontaneous baryogenesis. The electroweak sphalerons are sharply switched off after confinement and the baryon asymmetry is frozen in. Subsequently, evolution of the Higgs vacuum expectation value (which is modified in the confined phase) triggers a relaxation to a Standard Model-like vacuum. We identify viable regions of parameter space, and describe various experimental probes, including current and future collider constraints, and gravitational wave phenomenology.
In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.
The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.
We present a very minimal model for baryogenesis by a dark first-order phase transition. It employs a new dark $SU(2)_{D}$ gauge group with two doublet Higgs bosons, two lepton doublets, and two singlets. The singlets act as a neutrino portal that tr ansfer the generated asymmetry to the Standard Model. The model predicts $Delta N_text{eff} = 0.09-0.13$ detectable by future experiments as well as possible signals from exotic decays of the Higgs and $Z$ bosons and stochastic gravitational waves.
106 - Csaba Balazs 2014
I schematically, and very lightly, review some ideas that fuel model building in the field of baryogenesis. Due to limitations of space, and my expertise, this mini-review is incomplete and biased toward particle physics, especially supersymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا