ترغب بنشر مسار تعليمي؟ اضغط هنا

An entropic method for discrete systems with Gibbs entropy

349   0   0.0 ( 0 )
 نشر من قبل Zhenning Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider general systems of ordinary differential equations with monotonic Gibbs entropy, and introduce an entropic scheme that simply imposes an entropy fix after every time step of any existing time integrator. It is proved that in the general case, our entropy fix has only infinitesimal influence on the numerical order of the original scheme, and in many circumstances, it can be shown that the scheme does not affect the numerical order. Numerical experiments on the linear Fokker-Planck equation and nonlinear Boltzmann equation are carried out to support our numerical analysis.



قيم البحث

اقرأ أيضاً

An explicit numerical strategy that practically preserves invariants is derived for conservative systems by combining an explicit high-order Runge-Kutta (RK) scheme with a simple modification of the standard projection approach, which is named the ex plicit invariants-preserving (EIP) method. The proposed approach is shown to have the same order as the underlying RK method, while the error of invariants is analyzed in the order of $mathcal{O}left(h^{2(p+1)}right),$ where $h$ is the time step and $p$ represents the order of the method. When $p$ is appropriately large, the EIP method is practically invariants-conserving because the error of invariants can reach the machine accuracy. The method is illustrated for the cases of single and multiple invariants, with regard to both ODEs and high-dimensional PDEs. Extensive numerical experiments are presented to verify our theoretical results and demonstrate the superior behaviors of the proposed method in a long time numerical simulation. Numerical results suggest that the fourth-order EIP method preserves much better the qualitative properties of the flow than the standard fourth-order RK method and it is more efficient in practice than the fully implicit integrators.
In this work, we develop a discretisation method for the mixed formulation of the magnetostatic problem supporting arbitrary orders and polyhedral meshes. The method is based on a global discrete de Rham (DDR) sequence, obtained by patching the local spaces constructed in [Di Pietro, Droniou, Rapetti, Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra, arXiv:1911.03616] by enforcing the single-valuedness of the components attached to the boundary of each element. The first main contribution of this paper is a proof of exactness relations for this global DDR sequence, obtained leveraging the exactness of the corresponding local sequence and a topological assembly of the mesh valid for domains that do not enclose any void. The second main contribution is the formulation and well-posedness analysis of the method, which includes the proof of uniform Poincare inequalities for the discrete divergence and curl operators. The convergence rate in the natural energy norm is numerically evaluated on standard and polyhedral meshes. When the DDR sequence of degree $kge 0$ is used, the error converges as $h^{k+1}$, with $h$ denoting the meshsize.
The aim of this paper is to investigate the use of an entropic projection method for the iterative regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case o f reconstructing general nonnegative unknowns as well as for the sake of recovering probability distributions. Moreover, we discuss several variants of the algorithm and relations to other methods in the literature. The effectiveness of the approach is studied numerically in several examples.
We derive a numerical method for Darcy flow, hence also for Poissons equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its d iscretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solution in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is also included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this paper. We also include a discussion of the boundary condition in terms of exterior calculus.
119 - H. A. Erbay , S. Erbay , A. Erkip 2019
Numerical approximation of a general class of nonlinear unidirectional wave equations with a convolution-type nonlocality in space is considered. A semi-discrete numerical method based on both a uniform space discretization and the discrete convoluti on operator is introduced to solve the Cauchy problem. The method is proved to be uniformly convergent as the mesh size goes to zero. The order of convergence for the discretization error is linear or quadratic depending on the smoothness of the convolution kernel. The discrete problem defined on the whole spatial domain is then truncated to a finite domain. Restricting the problem to a finite domain introduces a localization error and it is proved that this localization error stays below a given threshold if the finite domain is large enough. For two particular kernel functions, the numerical examples concerning solitary wave solutions illustrate the expected accuracy of the method. Our class of nonlocal wave equations includes the Benjamin-Bona-Mahony equation as a special case and the present work is inspired by the previous work of Bona, Pritchard and Scott on numerical solution of the Benjamin-Bona-Mahony equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا