ﻻ يوجد ملخص باللغة العربية
In this work, we approach the minimization of a continuously differentiable convex function under linear equality constraints by a second-order dynamical system with asymptotically vanishing damping term. The system is formulated in terms of the augmented Lagrangian associated to the minimization problem. We show fast convergence of the primal-dual gap, the feasibility measure, and the objective function value along the generated trajectories. In case the objective function has Lipschitz continuous gradient, we show that the primal-dual trajectory asymptotically weakly converges to a primal-dual optimal solution of the underlying minimization problem. To the best of our knowledge, this is the first result which guarantees the convergence of the trajectory generated by a primal-dual dynamical system with asymptotic vanishing damping. Moreover, we will rediscover in case of the unconstrained minimization of a convex differentiable function with Lipschitz continuous gradient all convergence statements obtained in the literature for Nesterovs accelerated gradient method.
The spectral bundle method proposed by Helmberg and Rendl is well established for solving large scale semidefinite programs (SDP) thanks to its low per iteration computational complexity and strong practical performance. In this paper, we revisit thi
While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement lea
In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential)
This work studies a class of non-smooth decentralized multi-agent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common non-smooth term. We propose a general primal-dual algorithmic fr
We study randomized variants of two classical algorithms: coordinate descent for systems of linear equations and iterated projections for systems of linear inequalities. Expanding on a recent randomized iterated projection algorithm of Strohmer and V