ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Determination of Reactor Antineutrino Spectra from $^{235}$U and $^{239}$Pu Fission by Daya Bay and PROSPECT

162   0   0.0 ( 0 )
 نشر من قبل Jianrun Hu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A joint determination of the reactor antineutrino spectra resulting from the fission of $^{235}$U and $^{239}$Pu has been carried out by the Daya Bay and PROSPECT collaborations. This Letter reports the level of consistency of $^{235}$U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant $^{235}$U and $^{239}$Pu isotopes and improves the uncertainty of the $^{235}$U spectral shape to about 3%. The ${}^{235}$U and $^{239}$Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the $^{235}$U and $^{239}$Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.



قيم البحث

اقرأ أيضاً

This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5times 10^6$ invers e beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U and $^{239}$Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4--6~MeV, a 7% (9%) excess of events is observed for the $^{235}$U ($^{239}$Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is $4.0sigma$ for $^{235}$U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at $5.3sigma$. In the energy range of 4--6~MeV, a maximal local discrepancy of $6.3sigma$ is observed.
The PROSPECT and STEREO collaborations present a combined measurement of the pure $^{235}$U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with $chi^2/mathrm{ndf} = 24.1/21$, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This $bar{ u}_e$ energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model $chi^2$ value is improved, corresponding to a $2.4sigma$ significance.
This Letter reports the first measurement of the $^{235}$U $overline{ u_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$pm$304 (stat.) $overline{ u_{e}}$-induced inverse beta decays (IBD), the largest sample from HEU fission to date, 99% of which are attributed to $^{235}$U. Despite broad agreement, comparison of the Huber $^{235}$U model to the measured spectrum produces a $chi^2/ndf = 51.4/31$, driven primarily by deviations in two localized energy regions. The measured $^{235}$U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the $overline{ u_{e}}$ energy region of 5-7MeV.
In the 1980s, measurements of the cumulative $beta$ spectra of the fission products following the thermal neutron induced fission of $^{235}$U, $^{239}$Pu, and $^{241}$Pu were performed at the magnetic spectrometer BILL at the ILL in Grenoble. This d ata was published in bins of 250 keV. In this paper, we re-publish the original data in a binning of 50 keV for $^{235}$U and 100 keV for $^{239}$Pu and $^{241}$Pu.
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experi mental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $pm$ 0.04) $times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $pm$ 0.14) $times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946pm0.022$ ($0.991pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$sigma$ over the full energy range with a local significance of up to $sim$4$sigma$ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا