ﻻ يوجد ملخص باللغة العربية
In this note, we show that any epimorphism originating at a von Neumann regular ring (not necessary commutative) is a universal localization. As an application, we prove that the Telescope Conjecture holds for the unbounded derived categories of von Neumann regular rings (not necessary commutative).
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $T$ is called uniformly $S$-torsion provided that $sT=0$ for some $sin S$. The notion of $S$-exact sequences is also introduced from the viewpoint of uniformity. An $R$-module $F
We survey recent progress on the realization problem for von Neumann regular rings, which asks whether every countable conical refinement monoid can be realized as the monoid of isoclasses of finitely generated projective right $R$-modules over a von Neumann regular ring $R$.
Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequence
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minima