ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth rate of a stochastic growth process driven by an exponential Ornstein-Uhlenbeck process

160   0   0.0 ( 0 )
 نشر من قبل Dan Pirjol
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dan Pirjol




اسأل ChatGPT حول البحث

We study the stochastic growth process in discrete time $x_{i+1} = (1 + mu_i) x_i$ with growth rate $mu_i = rho e^{Z_i - frac12 var(Z_i)}$ proportional to the exponential of an Ornstein-Uhlenbeck (O-U) process $dZ_t = - gamma Z_t dt + sigma dW_t$ sampled on a grid of uniformly spaced times ${t_i}_{i=0}^n$ with time step $tau$. Using large deviation theory methods we compute the asymptotic growth rate (Lyapunov exponent) $lambda = lim_{nto infty} frac{1}{n} log mathbb{E}[x_n]$. We show that this limit exists, under appropriate scaling of the O-U parameters, and can be expressed as the solution of a variational problem. The asymptotic growth rate is related to the thermodynamical pressure of a one-dimensional lattice gas with attractive exponential potentials. For $Z_t$ a stationary O-U process the lattice gas coincides with a system considered previously by Kac and Helfand. We derive upper and lower bounds on $lambda$. In the large mean-reversion limit $gamma n tau gg 1$ the two bounds converge and the growth rate is given by a lattice version of the van der Waals equation of state. The predictions are tested against numerical simulations of the stochastic growth model.



قيم البحث

اقرأ أيضاً

119 - Chai Hok Eab , S.C. Lim 2016
This paper studies Langevin equation with random damping due to multiplicative noise and its solution. Two types of multiplicative noise, namely the dichotomous noise and fractional Gaussian noise are considered. Their solutions are obtained explicit ly, with the expressions of the mean and covariance determined explicitly. Properties of the mean and covariance of the Ornstein-Uhlenbeck process with random damping, in particular the asymptotic behavior, are studied. The effect of the multiplicative noise on the stability property of the resulting processes is investigated.
This paper addresses the problem of estimating drift parameter of the Ornstein - Uhlenbeck type process, driven by the sum of independent standard and fractional Brownian motions. The maximum likelihood estimator is shown to be consistent and asympto tically normal in the large-sample limit, using some recent results on the canonical representation and spectral structure of mixed processes.
We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-t hermal steady state. To describe the evolution of noise and correlations we develop a semiclassical effective description that allows us to model the dynamics as a stochastic Ornstein-Uhlenbeck process.
116 - S.C. Lim , Chai Hok Eab 2019
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t he properties of fractional Ornstein-Uhlenbeck process. Mixed tempered fractional Brownian motion is introduced and its properties are considered. Tempered fractional Brownian motion is generalised from single index to two indices. Finally, tempered multifractional Brownian motion and its properties are studied.
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, w e propose a practical estimator associated with the LSE of the drift parameter of mixed sub-fractional Ornstein-Uhlenbeck process, and illustrate the asymptotical properties according to our method of simulation when the Hurst parameter $H>1/2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا