ﻻ يوجد ملخص باللغة العربية
We study the stochastic growth process in discrete time $x_{i+1} = (1 + mu_i) x_i$ with growth rate $mu_i = rho e^{Z_i - frac12 var(Z_i)}$ proportional to the exponential of an Ornstein-Uhlenbeck (O-U) process $dZ_t = - gamma Z_t dt + sigma dW_t$ sampled on a grid of uniformly spaced times ${t_i}_{i=0}^n$ with time step $tau$. Using large deviation theory methods we compute the asymptotic growth rate (Lyapunov exponent) $lambda = lim_{nto infty} frac{1}{n} log mathbb{E}[x_n]$. We show that this limit exists, under appropriate scaling of the O-U parameters, and can be expressed as the solution of a variational problem. The asymptotic growth rate is related to the thermodynamical pressure of a one-dimensional lattice gas with attractive exponential potentials. For $Z_t$ a stationary O-U process the lattice gas coincides with a system considered previously by Kac and Helfand. We derive upper and lower bounds on $lambda$. In the large mean-reversion limit $gamma n tau gg 1$ the two bounds converge and the growth rate is given by a lattice version of the van der Waals equation of state. The predictions are tested against numerical simulations of the stochastic growth model.
This paper studies Langevin equation with random damping due to multiplicative noise and its solution. Two types of multiplicative noise, namely the dichotomous noise and fractional Gaussian noise are considered. Their solutions are obtained explicit
This paper addresses the problem of estimating drift parameter of the Ornstein - Uhlenbeck type process, driven by the sum of independent standard and fractional Brownian motions. The maximum likelihood estimator is shown to be consistent and asympto
We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-t
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, w