ﻻ يوجد ملخص باللغة العربية
We study the stochastic viscous nonlinear wave equations (SvNLW) on $mathbb T^2$, forced by a fractional derivative of the space-time white noise $xi$. In particular, we consider SvNLW with the singular additive forcing $D^frac{1}{2}xi$ such that solutions are expected to be merely distributions. By introducing an appropriate renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-type argument, we also prove global well-posedness of the defocusing cubic SvNLW. Lastly, in the defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian random initial data.
We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combinin
We consider the two-dimensional stochastic damped nonlinear wave equation (SdNLW) with the cubic nonlinearity, forced by a space-time white noise. In particular, we investigate the limiting behavior of solutions to SdNLW with regularized noises and e
We study the Cauchy problem for the nonlinear wave equations (NLW) with random data and/or stochastic forcing on a two-dimensional compact Riemannian manifold without boundary. (i) We first study the defocusing stochastic damped NLW driven by additiv
We explore the relation between fast waves, damping and imposed noise for different scalings by considering the singularly perturbed stochastic nonlinear wave equations u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on a bounded spatial domain. An asymptoti
We study the two-dimensional stochastic sine-Gordon equation (SSG) in the hyperbolic setting. In particular, by introducing a suitable time-dependent renormalization for the relevant imaginary multiplicative Gaussian chaos, we prove local well-posedn