ﻻ يوجد ملخص باللغة العربية
Amino acids are the essential keys in chemistry that contribute to the study of the formation of life. The complex organic molecule glycine (NH$_{2}$CH$_{2}$COOH) is the simplest amino acid that has been investigated in the interstellar medium for a long period to search for a potential connection between the Universe and the origin of life. In the last forty years, several attempts have failed to detect the interstellar glycine in the hot molecular cores and star-forming regions. We report the possible detection of the rotational emission lines of interstellar glycine with conformer I and II in the hot molecular core G10.47+0.03 between the frequency range of $ u$ = 158.6$-$160.4 GHz with Atacama Large Millimeter/Submillimeter Array (ALMA) observation. Under the Local Thermodynamic Equilibrium (LTE) condition, we apply the rotational diagram method to estimate the column density ($N$) and rotational temperature ($T_{rot}$) of the detected amino acid glycine. Using rotational diagram, we find the column density of glycine $N$(NH$_{2}$CH$_{2}$COOH) = 2.8$times$10$^{18}$ cm$^{-2}$ with rotational temperature $T_{rot}$ = 115.9 K. We also apply the Levenberg$-$Marquardt algorithm to extract the line parameters of detected emission lines of glycine.
After hydrogen, oxygen, and carbon, nitrogen is one of the most chemically active species in the interstellar medium (ISM). Nitrogen bearing molecules have great importance as they are actively involved in the formation of biomolecules. Therefore, it
We present the first detection of interstellar acetone [(CH3)2CO] toward the high mass star forming region Orion-KL and the first detection of vibrationally excited (CH3)2CO in the ISM. Using the BIMA Array, 28 emission features that can be assigned
Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels betwee
We present Submillimeter Array (SMA) observations toward the high-mass star-forming region IRAS 18566+0408. Observations at 1.3 mm continuum and in several molecular line transitions were performed in the compact (2.4 angular resolution) and very-ext
Methyl carbamate CH$_3$OC(O)NH$_2$ is an isomer of glycine. Quantum chemical analyses show that methyl carbamate is more stable isomer than glycine. Because of this, there could be a higher chance for methyl carbamte to exist in the interstellar medi