ﻻ يوجد ملخص باللغة العربية
In this article, we discuss the Grothendieck group completion (GGC) of a gyrogroup. Consequently, we show that there is a one to one correspondence between actions and representations of a gyrogroup, and actions and representations of its Grothendieck group completion. We also introduce the concept of an action of a right gyrogroup.
Using computational methods, we complete the determination of the $3$-modular character table of the Chevalley group $F_4(2)$ and its covering group.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories, with a particular focus on classes of examples of $mathbb{F}_1$-linear nature. Our main results are analogues of theorems of Quillen and Schlichting, relating t
Let $(mathcal{G},Gamma)$ be an abstract graph of finite groups. If $Gamma$ is finite, we can construct a profinite graph of groups in a natural way $(hat{mathcal{G}},Gamma)$, where $hat{mathcal{G}}(m)$ is the profinite completion of $mathcal{G}(m)$ f
It is well known that $G=langle x,y:x^2=y^3=1rangle$ represents the modular group $PSL(2,Z)$, where $x:zrightarrowfrac{-1}{z}, y:zrightarrowfrac{z-1}{z}$ are linear fractional transformations. Let $n=k^2m$, where $k$ is any non zero integer and $m$ i
Two groups are said to have the same nilpotent genus if they have the same nilpotent quotients. We answer four questions of Baumslag concerning nilpotent completions. (i) There exists a pair of finitely generated, residually torsion-free-nilpotent gr