ﻻ يوجد ملخص باللغة العربية
We develop a general theory of random walks on hypergraphs which includes, as special cases, the different models that are found in literature. In particular, we introduce and analyze general random walk Laplacians for hypergraphs, and we compare them to hypergraph normalized Laplacians that are not necessarily related to random walks, but which are motivated by biological and chemical networks. We show that, although these two classes of Laplacians coincide in the case of graphs, they appear to have important conceptual differences in the general case. We study the spectral properties of both classes, as well as their applications to Coupled Hypergraph Maps: discrete-time dynamical systems that generalize the well-known Coupled Map Lattices on graphs. Our results also show why for some hypergraph Laplacian variants one expects more classical results from (weighted) graphs to generalize directly, while these results must fail for other hypergraph Laplacians.
Classical turning surfaces of Kohn-Sham potentials, separating classically-allowed regions (CARs) from classically-forbidden regions (CFRs), provide a useful and rigorous approach to understanding many chemical properties of molecules. Here we calcul
We introduce quantum hypergraphs, in analogy with the theory of quantum graphs developed over the last 15 years by many authors. We emphasize some problems that arise when one tries to define a Laplacian on a hypergraph.
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger
We study directed, weighted graphs $G=(V,E)$ and consider the (not necessarily symmetric) averaging operator $$ (mathcal{L}u)(i) = -sum_{j sim_{} i}{p_{ij} (u(j) - u(i))},$$ where $p_{ij}$ are normalized edge weights. Given a vertex $i in V$, we defi
Let $Omega$ be a curvilinear polygon and $Q^gamma_{Omega}$ be the Laplacian in $L^2(Omega)$, $Q^gamma_{Omega}psi=-Delta psi$, with the Robin boundary condition $partial_ u psi=gamma psi$, where $partial_ u$ is the outer normal derivative and $gamma>0