ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical complexity of the joint nulled weak-lensing probability distribution function

107   0   0.0 ( 0 )
 نشر من قبل Alexandre Barthelemy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of tomographic cosmic shear surveys, there exists a nulling transformation of weak lensing observations (also called BNT transform) that allows us to simplify the correlation structure of tomographic cosmic shear observations, as well as to build observables that depend only on a localised range of redshifts and thus independent from the low-redshift/small-scale modes. This procedure renders possible accurate, and from-first-principles, predictions of the convergence and aperture mass one-point distributions (PDF). We here explore other consequences of this transformation on the (reduced) numerical complexity of the estimation of the joint PDF between nulled bins and demonstrate how to use these results to make theoretical predictions.

قيم البحث

اقرأ أيضاً

We introduce the position-dependent probability distribution function (PDF) of the smoothed matter field as a cosmological observable. In comparison to the PDF itself, the spatial variation of the position-dependent PDF is simpler to model and has di stinct dependence on cosmological parameters. We demonstrate that the position-dependent PDF is characterized by variations in the local mean density, and we compute the linear response of the PDF to the local density using separate universe N-body simulations. The linear response of the PDF to the local density field can be thought of as the linear bias of regions of the matter field selected based on density. We provide a model for the linear response, which accurately predicts our simulation measurements. We also validate our results and test the separate universe consistency relation for the local PDF using global universe simulations. We find excellent agreement between the two, and we demonstrate that the separate universe method gives a lower variance determination of the linear response.
We provide a systematic study of the position-dependent correlation function in weak lensing convergence maps and its relation to the squeezed limit of the three-point correlation function (3PCF) using state-of-the-art numerical simulations. We relat e the position-dependent correlation function to its harmonic counterpart, i.e., the position-dependent power spectrum or equivalently the integrated bispectrum. We use a recently proposed improved fitting function, BiHalofit, for the bispectrum to compute the theoretical predictions as a function of source redshifts. In addition to low redshift results ($z_s=1.0-2.0$) we also provide results for maps inferred from lensing of the cosmic microwave background, i.e., $z_s=1100$. We include a {em Euclid}-type realistic survey mask and noise. In agreement with the recent studies on the position-dependent power spectrum, we find that the results from simulations are consistent with the theoretical expectations when appropriate corrections are included.
In the context of tomographic cosmic shear surveys, a theoretical model for the one-point statistics of the aperture mass (Map) is developed. This formalism is based on the application of the large deviation principle to the projected matter density field and more specifically to the angular aperture masses. The latter holds the advantage of being an observable that can be directly extracted from the observed shear field and to be, by construction, independent from the long wave modes. Furthermore we show that, with the help of a nulling procedure based on the so-called BNT transform, it is possible to build observables that depend only on a finite range of redshifts making them also independent from the small-scale modes. This procedure makes predictions for the shape of the one-point Probability Distribution Function of such an observable very accurate, comparable to what had been previously obtained for 3D observables. Comparisons with specific simulations reveal however inconsistent results showing that synthetic lensing maps were not accurate enough for such refined observables. It points to the need for more precise dedicated numerical developments whose performances could be benchmarked with such observables. We furthermore review the possible systematics that could affect such a formalism in future weak-lensing surveys like Euclid, notably the impact of shape noise as well as leading corrections coming from lens-lens couplings, geodesic deviation, reduced shear and magnification bias.
The Lyman-$alpha$ forest is a highly non-linear field with a lot of information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this pape r we argue that measuring coefficients of the Legendre polyonomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, $n$-th coefficient can be expressed as a linear combination of the first $n$ moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $le 5% pm 6%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 pm 0.35$ at $M_{200c} simeq 14times 10^{14}M_odot$ and an intrinsic scatter of $sigma(ln c_{200c}) = 0.13 pm 0.06$, in excellent agreement with LCDM predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos, namely, the NFW, Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $c_{200c} = 3.79^{+0.30}_{-0.28}$ at $M_{200c} = 14.1^{+1.0}_{-1.0}times 10^{14}M_odot$, demonstrating consistency between complementary analysis methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا