ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-metallicity hypernova uncovered by an ultra metal-poor star in the Sculptor dwarf spheroidal galaxy

82   0   0.0 ( 0 )
 نشر من قبل \\'Asa Sk\\'ulad\\'ottir Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although true metal-free Population III stars have so-far escaped discovery, their nature, and that of their supernovae, is revealed in the chemical products left behind in the next generations of stars. Here we report the detection of an ultra-metal poor star in the Sculptor dwarf spheroidal galaxy, AS0039. With [Fe/H]$_{rm LTE}=-4.11$, it is the most metal-poor star so far discovered in any external galaxy. Contrary to the majority of Milky Way stars at this metallicity, AS0039 is clearly not enhanced in carbon, with [C/Fe]$_{rm LTE}=-0.75$ and A(C)=+3.60, making it the lowest detected carbon abundance in any star to date. It furthermore lacks $alpha$-element uniformity, having extremely low [Mg/Ca]$_{rm NLTE}=-0.60$ and [Mg/Ti]$_{rm NLTE}=-0.86$, in stark contrast with the near solar ratios observed in C-normal stars within the Milky Way halo. The unique abundance pattern indicates that AS0039 formed out of material that was predominantly enriched by a $sim$20$ M_odot$ progenitor star with an unusually high explosion energy $E=10times10^{51}$ erg. The star AS0039 is thus one of the first observational evidence for zero-metallicity hypernovae and provides a unique opportunity to investigate the diverse nature of Population III stars.



قيم البحث

اقرأ أيضاً

We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the Dwarf Abundances and Radial Velocities Team (DART) using the latest calibration. Of the seven extremely metal-poor candidates, five stars are confirmed to be extremely metal-poor (i.e., [Fe/H]<-3 dex), with [Fe/H]=-3.47 +/- 0.07 for our most metal-poor star. All are around or below [Fe/H]=-2.5 dex from the measurement of individual Fe lines. These values are in agreement with the CaT predictions to within error bars. None of the seven stars is found to be carbon-rich. We estimate a 2-13% possibility of this being a pure chance effect, which could indicate a lower fraction of carbon-rich extremely metal-poor stars in Sculptor compared to the Milky Way halo. The [alpha/Fe] ratios show a range from +0.5 to -0.5, a larger variation than seen in Galactic samples although typically consistent within 1-2sigma. One star seems mildly iron-enhanced. Our program stars show no deviations from the Galactic abundance trends in chromium and the heavy elements barium and strontium. Sodium abundances are, however, below the Galactic values for several stars. Overall, we conclude that the CaT lines are a successful metallicity indicator down to the extremely metal-poor regime and that the extremely metal-poor stars in the Sculptor dwarf galaxy are chemically more similar to their Milky Way halo equivalents than the more metal-rich population of stars.
157 - Anna Frebel , 2009
Current cosmological models indicate that the Milky Ways stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic bui lding blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.
The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor fro m medium-resolution (R ~ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] < -3.0) and 21 carbon-enhanced metal-poor (CEMP) star candidates. Eight carbon-enhanced stars are classified with at least 2$sigma$ confidence and five are confirmed as such with follow-up R~6000 observations using the Magellan Echellette Spectrograph on the Magellan-Baade 6.5m telescope. We measure a CEMP fraction of 36% for stars below [Fe/H] = -3.0, indicating that the prevalence of carbon-enhanced stars in Sculptor is similar to that of the halo (~43%) after excluding likely CEMP-s and CEMP-r/s stars from our sample. However, we do not detect that any CEMP stars are strongly enhanced in carbon (e.g., [C/Fe] > 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies.
153 - Anirudh Chiti , Anna Frebel 2019
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of p ublic photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.
We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed an alysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggestive of a fair proportion of s-process; we discuss the implication for the nucleosynthetic origin of the neutron capture elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا