ترغب بنشر مسار تعليمي؟ اضغط هنا

Key-Sparse Transformer with Cascaded Cross-Attention Block for Multimodal Speech Emotion Recognition

94   0   0.0 ( 0 )
 نشر من قبل Weidong Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech emotion recognition is a challenging and important research topic that plays a critical role in human-computer interaction. Multimodal inputs can improve the performance as more emotional information is used for recognition. However, existing studies learnt all the information in the sample while only a small portion of it is about emotion. Moreover, under the multimodal framework, the interaction between different modalities is shallow and insufficient. In this paper, a keysparse Transformer is proposed for efficient SER by only focusing on emotion related information. Furthermore, a cascaded cross-attention block, which is specially designed for multimodal framework, is introduced to achieve deep interaction between different modalities. The proposed method is evaluated by IEMOCAP corpus and the experimental results show that the proposed method gives better performance than the state-of-theart approaches.



قيم البحث

اقرأ أيضاً

Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N etworks (DNN), most of the studies in the literature fail to consider the semantic information in the speech signal. In this paper, we propose a novel framework that can capture both the semantic and the paralinguistic information in the signal. In particular, our framework is comprised of a semantic feature extractor, that captures the semantic information, and a paralinguistic feature extractor, that captures the paralinguistic information. Both semantic and paraliguistic features are then combined to a unified representation using a novel attention mechanism. The unified feature vector is passed through a LSTM to capture the temporal dynamics in the signal, before the final prediction. To validate the effectiveness of our framework, we use the popular SEWA dataset of the AVEC challenge series and compare with the three winning papers. Our model provides state-of-the-art results in the valence and liking dimensions.
Generative adversarial networks (GANs) have shown potential in learning emotional attributes and generating new data samples. However, their performance is usually hindered by the unavailability of larger speech emotion recognition (SER) data. In thi s work, we propose a framework that utilises the mixup data augmentation scheme to augment the GAN in feature learning and generation. To show the effectiveness of the proposed framework, we present results for SER on (i) synthetic feature vectors, (ii) augmentation of the training data with synthetic features, (iii) encoded features in compressed representation. Our results show that the proposed framework can effectively learn compressed emotional representations as well as it can generate synthetic samples that help improve performance in within-corpus and cross-corpus evaluation.
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper present s results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
In Speech Emotion Recognition (SER), emotional characteristics often appear in diverse forms of energy patterns in spectrograms. Typical attention neural network classifiers of SER are usually optimized on a fixed attention granularity. In this paper , we apply multiscale area attention in a deep convolutional neural network to attend emotional characteristics with varied granularities and therefore the classifier can benefit from an ensemble of attentions with different scales. To deal with data sparsity, we conduct data augmentation with vocal tract length perturbation (VTLP) to improve the generalization capability of the classifier. Experiments are carried out on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset. We achieved 79.34% weighted accuracy (WA) and 77.54% unweighted accuracy (UA), which, to the best of our knowledge, is the state of the art on this dataset.
The cross-speaker emotion transfer task in TTS particularly aims to synthesize speech for a target speaker with the emotion transferred from reference speech recorded by another (source) speaker. During the emotion transfer process, the identity info rmation of the source speaker could also affect the synthesized results, resulting in the issue of speaker leakage. This paper proposes a new method with the aim to synthesize controllable emotional expressive speech and meanwhile maintain the target speakers identity in the cross-speaker emotion TTS task. The proposed method is a Tacotron2-based framework with the emotion embedding as the conditioning variable to provide emotion information. Two emotion disentangling modules are contained in our method to 1) get speaker-independent and emotion-discriminative embedding, and 2) explicitly constrain the emotion and speaker identity of synthetic speech to be that as expected. Moreover, we present an intuitive method to control the emotional strength in the synthetic speech for the target speaker. Specifically, the learned emotion embedding is adjusted with a flexible scalar value, which allows controlling the emotion strength conveyed by the embedding. Extensive experiments have been conducted on a Mandarin disjoint corpus, and the results demonstrate that the proposed method is able to synthesize reasonable emotional speech for the target speaker. Compared to the state-of-the-art reference embedding learned methods, our method gets the best performance on the cross-speaker emotion transfer task, indicating that our method achieves the new state-of-the-art performance on learning the speaker-independent emotion embedding. Furthermore, the strength ranking test and pitch trajectories plots demonstrate that the proposed method can effectively control the emotion strength, leading to prosody-diverse synthetic speech.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا