ترغب بنشر مسار تعليمي؟ اضغط هنا

Fourier Transform Approximation as an Auxiliary Task for Image Classification

328   0   0.0 ( 0 )
 نشر من قبل Chen Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chen Liu




اسأل ChatGPT حول البحث

Image reconstruction is likely the most predominant auxiliary task for image classification, but we would like to think twice about this convention. In this paper, we investigated approximating the Fourier Transform of the input image as a potential alternative, in the hope that it may further boost the performances on the primary task or introduce novel constraints not well covered by image reconstruction. We experimented with five popular classification architectures on the CIFAR-10 dataset, and the empirical results indicated that our proposed auxiliary task generally improves the classification accuracy. More notably, the results showed that in certain cases our proposed auxiliary task may enhance the classifiers resistance to adversarial attacks generated using the fast gradient sign method.

قيم البحث

اقرأ أيضاً

Estimating the remaining surgery duration (RSD) during surgical procedures can be useful for OR planning and anesthesia dose estimation. With the recent success of deep learning-based methods in computer vision, several neural network approaches have been proposed for fully automatic RSD prediction based solely on visual data from the endoscopic camera. We investigate whether RSD prediction can be improved using unsupervised temporal video segmentation as an auxiliary learning task. As opposed to previous work, which presented supervised surgical phase recognition as auxiliary task, we avoid the need for manual annotations by proposing a similar but unsupervised learning objective which clusters video sequences into temporally coherent segments. In multiple experimental setups, results obtained by learning the auxiliary task are incorporated into a deep RSD model through feature extraction, pretraining or regularization. Further, we propose a novel loss function for RSD training which attempts to counteract unfavorable characteristics of the RSD ground truth. Using our unsupervised method as an auxiliary task for RSD training, we outperform other self-supervised methods and are comparable to the supervised state-of-the-art. Combined with the novel RSD loss, we slightly outperform the supervised approach.
We present a new supervised image classification method applicable to a broad class of image deformation models. The method makes use of the previously described Radon Cumulative Distribution Transform (R-CDT) for image data, whose mathematical prope rties are exploited to express the image data in a form that is more suitable for machine learning. While certain operations such as translation, scaling, and higher-order transformations are challenging to model in native image space, we show the R-CDT can capture some of these variations and thus render the associated image classification problems easier to solve. The method -- utilizing a nearest-subspace algorithm in R-CDT space -- is simple to implement, non-iterative, has no hyper-parameters to tune, is computationally efficient, label efficient, and provides competitive accuracies to state-of-the-art neural networks for many types of classification problems. In addition to the test accuracy performances, we show improvements (with respect to neural network-based methods) in terms of computational efficiency (it can be implemented without the use of GPUs), number of training samples needed for training, as well as out-of-distribution generalization. The Python code for reproducing our results is available at https://github.com/rohdelab/rcdt_ns_classifier.
148 - Xu Shen , Xinmei Tian , Anfeng He 2019
Convolutional neural networks (CNNs) have achieved state-of-the-art results on many visual recognition tasks. However, current CNN models still exhibit a poor ability to be invariant to spatial transformations of images. Intuitively, with sufficient layers and parameters, hierarchical combinations of convolution (matrix multiplication and non-linear activation) and pooling operations should be able to learn a robust mapping from transformed input images to transform-invariant representations. In this paper, we propose randomly transforming (rotation, scale, and translation) feature maps of CNNs during the training stage. This prevents complex dependencies of specific rotation, scale, and translation levels of training images in CNN models. Rather, each convolutional kernel learns to detect a feature that is generally helpful for producing the transform-invariant answer given the combinatorially large variety of transform levels of its input feature maps. In this way, we do not require any extra training supervision or modification to the optimization process and training images. We show that random transformation provides significant improvements of CNNs on many benchmark tasks, including small-scale image recognition, large-scale image recognition, and image retrieval. The code is available at https://github.com/jasonustc/caffe-multigpu/tree/TICNN.
Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and sufferings during post-natural disasters based on social media contents (text and images). While notable progre ss has been made using texts, research on exploiting the images remains relatively under-explored. To advance the image-based approach, we propose MEDIC (available at: https://crisisnlp.qcri.org/medic/index.html), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media image, disaster response, and multi-task learning research. An important property of this dataset is its high potential to contribute research on multi-task learning, which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research.
Exterior contour and interior structure are both vital features for classifying objects. However, most of the existing methods consider exterior contour feature and internal structure feature separately, and thus fail to function when classifying pat chy image structures that have similar contours and flexible structures. To address above limitations, this paper proposes a novel Multi-Orientation Region Transform (MORT), which can effectively characterize both contour and structure features simultaneously, for patchy image structure classification. MORT is performed over multiple orientation regions at multiple scales to effectively integrate patchy features, and thus enables a better description of the shape in a coarse-to-fine manner. Moreover, the proposed MORT can be extended to combine with the deep convolutional neural network techniques, for further enhancement of classification accuracy. Very encouraging experimental results on the challenging ultra-fine-grained cultivar recognition task, insect wing recognition task, and large variation butterfly recognition task are obtained, which demonstrate the effectiveness and superiority of the proposed MORT over the state-of-the-art methods in classifying patchy image structures. Our code and three patchy image structure datasets are available at: https://github.com/XiaohanYu-GU/MReT2019.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا