ترغب بنشر مسار تعليمي؟ اضغط هنا

Flat band carrier confinement in magic-angle twisted bilayer graphene

124   0   0.0 ( 0 )
 نشر من قبل Eva Y. Andrei
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magic angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress but improving sample quality is essential for separating the delicate correlated-electron physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist-angle variation which has been studied elsewhere. Here, by using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, we demonstrate that flat bands in twisted bilayer graphene can amplify small doping inhomogeneity that surprisingly leads to carrier confinement, which in graphene could previously only be realized in the presence of a strong magnetic field.

قيم البحث

اقرأ أيضاً

Magic-angle twisted bilayer graphene (MA-TBG) exhibits intriguing quantum phase transitions triggered by enhanced electron-electron interactions when its flat-bands are partially filled. However, the phases themselves and their connection to the puta tive non-trivial topology of the flat bands are largely unexplored. Here we report transport measurements revealing a succession of doping-induced Lifshitz transitions that are accompanied by van Hove singularities (VHS) which facilitate the emergence of correlation-induced gaps and topologically non-trivial sub-bands. In the presence of a magnetic field, well quantized Hall plateaus at filling of 1, 2, 3 carriers per moire-cell reveal the sub-band topology and signal the emergence of Chern insulators with Chern-numbers, ! = !, !, !, respectively. Surprisingly, for magnetic fields exceeding 5T we observe a VHS at a filling of 3.5, suggesting the possibility of a fractional Chern insulator. This VHS is accompanied by a crossover from low-temperature metallic, to high-temperature insulating behavior, characteristic of entropically driven Pomeranchuk-like transitions,
The interplay between interlayer van der Waals interaction and intralayer lattice distortion can lead to structural reconstruction in slightly twisted bilayer graphene (TBG) with the twist angle being smaller than a characteristic angle {theta}c. Exp erimentally, the {theta}c is demonstrated to be very close to the magic angle ({theta} ~ 1.05{deg}). In this work, we address the transition between reconstructed and unreconstructed structures of the TBG across the magic angle by using scanning tunnelling microscopy (STM). Our experiment demonstrates that both the two structures are stable in the TBG around the magic angle. By applying a STM tip pulse, we show that the two structures can be switched to each other and the bandwidth of the flat bands, which plays a vital role in the emergent strongly correlated states in the magic-angle TBG, can be tuned. The observed tunable lattice reconstruction and bandwidth of the flat bands provide an extra control knob to manipulate the exotic electronic states of the TBG near the magic angle.
Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetical ly flat Chern bands and highlighted the critical role of a particular quantum band geometry. Thus far, however, FCI states have only been observed in Bernal-stacked bilayer graphene aligned with hexagonal boron nitride (BLG/hBN), in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field and limiting its potential for applications. By contrast, magic angle twisted bilayer graphene (MATBG) supports flat Chern bands at zero magnetic field, and therefore offers a promising route toward stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in MATBG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically-trivial charge density wave states. Unlike the BLG/hBN platform, we demonstrate that the principal role of the weak magnetic field here is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum band geometry favorable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in moire systems with native flat Chern bands.
A purely electronic mechanism is proposed for the unconventional superconductivity recently observed in twisted bilayer graphene (tBG) close to the magic angle. Using the Migdal-Eliashberg framework on a one parameter effective lattice model for tBG we show that a superconducting state can be achieved by means of collective electronic modes in tBG. We posit robust features of the theory, including an asymmetrical superconducting dome and the magnitude of the critical temperature that are in agreement with experiments.
Using the semiclassical quantum Boltzmann theory and employing the Dirac model with twist angle-dependent Fermi velocity we obtain results for the electrical resistivity, the electronic thermal resistivity, the Seebeck coefficient, and the Wiedemann- Franz ratio in near magic angle twisted bilayer graphene, as functions of doping density (around the charge-neutrality-point) and modified Fermi velocity $tilde v$. The $tilde v$-dependence of the relevant scattering mechanisms, i.e. electron-hole Coulomb, long-ranged impurities, and acoustic gauge phonons, is considered in detail. We find a range of twist angles and temperatures, where the combined effect of momentum-non-conserving collisions (long-ranged impurities and phonons) is minimal, opening a window for the observation of strong hydrodynamic transport. Several experimental signatures are identified, such as a sharp dependence of the electric resistivity on doping density and a large enhancement of the Wiedemann-Franz ratio and the Seebeck coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا