ترغب بنشر مسار تعليمي؟ اضغط هنا

A posteriori goal-oriented bounds for the Poisson problem using potential and equilibrated flux reconstructions: application to the hybridizable discontinuous Galerkin method

91   0   0.0 ( 0 )
 نشر من قبل N\\'uria Par\\'es
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general framework to compute upper and lower bounds for linear-functional outputs of the exact solutions of the Poisson equation based on reconstructions of the field variable and flux for both the primal and adjoint problems. The method is devised from a generalization of the complementary energy principle and the duality theory. Using duality theory, the computation of bounds is reduced to finding independent potential and equilibrated flux reconstructions. A generalization of this result is also introduced, allowing to derive alternative guaranteed bounds from nearly-arbitrary H(div;{Omega}) flux reconstructions (only zero-order equilibration is required). This approach is applicable to any numerical method used to compute the solution. In this work, the proposed approach is applied to derive bounds for the hybridizable discontinuous Galerkin (HDG) method. An attractive feature of the proposed approach is that superconvergence on the bound gap is achieved, yielding accurate bounds even for very coarse meshes. Numerical experiments are presented to illustrate the performance and convergence of the bounds for the HDG method in both uniform and adaptive mesh refinements.



قيم البحث

اقرأ أيضاً

We present a parallel computing strategy for a hybridizable discontinuous Galerkin (HDG) nested geometric multigrid (GMG) solver. Parallel GMG solvers require a combination of coarse-grain and fine-grain parallelism to improve time to solution perfor mance. In this work we focus on fine-grain parallelism. We use Intels second generation Xeon Phi (Knights Landing) many-core processor. The GMG method achieves ideal convergence rates of $0.2$ or less, for high polynomial orders. A matrix free (assembly free) technique is exploited to save considerable memory usage and increase arithmetic intensity. HDG enables static condensation, and due to the discontinuous nature of the discretization, we developed a matrix vector multiply routine that does not require any costly synchronizations or barriers. Our algorithm is able to attain 80% of peak bandwidth performance for higher order polynomials. This is possible due to the data locality inherent in the HDG method. Very high performance is realized for high order schemes, due to good arithmetic intensity, which declines as the order is reduced.
In this article, we aim to recover locally conservative and $H(div)$ conforming fluxes for the linear Cut Finite Element Solution with Nitsches method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in the Raviart-Thomas space is completely local and does not require to solve any mixed problem. The $L^2$-norm of the difference between the numerical flux and the recovered flux can then be used as a posteriori error estimator in the adaptive mesh refinement procedure. Theoretically we are able to prove the global reliability and local efficiency. The theoretical results are verified in the numerical results. Moreover, in the numerical results we also observe optimal convergence rate for the flux error.
132 - Leilei Wei , Yinnian He 2020
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully di screte local discontinuous Galerkin (LDG) method based on the generalized alternating numerical fluxes for the tempered fractional diffusion equation. From a practical point of view, the generalized alternating numerical flux which is different from the purely alternating numerical flux has a broader range of applications. We first design an efficient finite difference scheme to approximate the tempered fractional derivatives and then a fully discrete LDG method for the tempered fractional diffusion equation. We prove that the scheme is unconditionally stable and convergent with the order $O(h^{k+1}+tau^{2-alpha})$, where $h, tau$ and $k$ are the step size in space, time and the degree of piecewise polynomials, respectively. Finally numerical experimets are performed to show the effectiveness and testify the accuracy of the method.
We propose a new discontinuous Galerkin method based on the least-squares patch reconstruction for the biharmonic problem. We prove the optimal error estimate of the proposed method. The two-dimensional and three-dimensional numerical examples are pr esented to confirm the accuracy and efficiency of the method with several boundary conditions and several types of polygon meshes and polyhedral meshes.
We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K) $. The scalar product corresponding to such a norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual Element Method. Stability and optimal error estimates in the broken $H^1$ norm are proven under a weak shape regularity assumption allowing the presence of very small edges. The results of numerical tests confirm the theoretical estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا