ﻻ يوجد ملخص باللغة العربية
Understanding lattice dynamics is crucial for effective thermal management in high-power electronic devices because phonons dominate thermal transport in most semiconductors. This study utilizes complementary inelastic X-ray and neutron scattering techniques and reports the temperature-dependent phonon dynamics of alpha-GaN, one of the most important third-generation power semiconductors. A prominent Matryoshka phonon dispersion is discovered with the scattering tools and confirmed by the first-principles calculations. Such Matryoshka twinning throughout the three-dimension reciprocal space is demonstrated to amplify the anharmonicity of the related phonon modes through creating abundant three-phonon scattering channels and cutting the phonon lifetime of affected modes by more than 50%. Such phonon topology effectively contributes to the reduction of the in-plane thermal transport, thus the anisotropic thermal conductivity of alpha-GaN. The results not only have significant implications for engineering the thermal performance and other phonon-related properties of alpha-GaN, but also offer valuable insights on the role of anomalous phonon topology in thermal transport of other technically important semiconductors.
UV Raman scattering studies show longitudinal optical (LO) mode up to 4th order in wurtzite GaN nanowire system. Frohlich interaction of electron with the long range electrostatic field of ionic bonded GaN gives rise to enhancement in LO phonon modes
We show how the St.Venant compatibility relations for strain in three dimensions lead to twinning for the cubic to tetragonal transition in martensitic materials within a Ginzburg-Landau model in terms of the six components of the symmetric strain te
Electronic states of a correlated material can be effectively modified by structural variations delivered from a single-crystal substrate. In this letter, we show that the CrN films grown on MgO (001) substrates have a (001) orientation, whereas the
Semiconductor heterostructures based on layered two-dimensional transition metal dichalcogenides (TMD) interfaced to gallium nitride (GaN) are excellent material systems to realize broadband light emitters and absorbers. The surface properties of the
We report on the temperature dependence of the mobility, $mu$, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4$times10^{12}$ cm$^{-2}$ to 3.0$times10^{12}$ cm$^{-2}$